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Figure 1: Our benchmark BeCoS provides correspondences between thousands of shapes (visualised via colour transfer). As a special focus,
we consider the generation of partial shapes, where we can generate partial shape matching instances across diverse four-legged animals and
humanoid categories (grey parts indicate the missing parts of partial shapes).

Abstract

Finding correspondences between 3D deformable shapes is an important and long-standing problem in geometry processing,
computer vision, graphics, and beyond. While various shape matching datasets exist, they are mostly static or limited in size,
restricting their adaptation to different problem settings, including both full and partial shape matching. In particular the
existing partial shape matching datasets are small (fewer than 100 shapes) and thus unsuitable for data-hungry machine
learning approaches. Moreover, the type of partiality present in existing datasets is often artificial and far from realistic. To
address these limitations, we introduce a generic and flexible framework for the procedural generation of challenging full
and partial shape matching datasets. Our framework allows the propagation of custom annotations across shapes, making
it useful for various applications. By utilising our framework and manually creating cross-dataset correspondences between
seven existing (complete geometry) shape matching datasets, we propose a new large benchmark BeCoS with a total of 2543
shapes. Based on this, we offer several challenging benchmark settings, covering both full and partial matching, for which
we evaluate respective state-of-the-art methods as baselines. Visualisations and code of our benchmark can be found at:
https://nafieamrani.github.io/BeCoS/.
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1. Introduction cal shape analysis [HSS*09; BRLB14}; [ECB24]|. The problem has
been widely studied in the literature [OBS*12}[ELC20;[AEOW?23},

WWO24; |CRB23]], and can vary significantly in complexity. For
example, current methods still struggle when estimating severe non-

isometric deformations for shapes of different categories
PKO22}, [ELC20; BXNL24}, [CEE*24], or when they are only par-
tially observed [EGR*24]. Current non-isometric shape

Finding correspondences between deformable shapes is a fundamen-
tal problem in geometry processing, with various applications such
as texture and deformation transfer [DYTO05;/OBS*12], or statisti-
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datasets are often limited in size and flexibility [ZKJB17; MMR*19;
DLR*20; MRSO22; [LTT*21]], restricting their ability to support
dense correspondence propagation or custom annotations, which
reduces their applicability to broader tasks.

In real-world scenarios, it is particularly common to encounter
shapes with missing parts due to occlusions, limited sensor cov-
erage, or acquisition errors during 3D scanning. The setting in
which at least part of one shape does not exist on the other is
called partial shape matching [RCB*17;|APO21; RSCB22;[ERE*23];
EGR*24]]. Despite its practical relevance, partial shape matching
has received limited attention in the context of machine learning-
based approaches, partly because of the increased difficulty, but
largely due to the lack of suitable and realistic large-scale datasets,
a requirement for data-hungry learning algorithms. The full-to-
full matching setting is not only simpler but also benefits from
wider data availability which has supported the development of
data-driven methods that already display convincing performance,
even without supervision [HLR*19; RSO19};|CRB23]]. In contrast,
existing datasets for partial shape correspondence often suffer from
a small number of shapes, limited realism of generated partiality
(e.g., cuts or holes) [CRB*16], and a lack of diversity in shape
categories [BDK23; |APO21||. This limited data availability ham-
pers the progress of data-driven methods for partial shape match-
ing; recent approaches have thus required pre-training with large
full-geometry datasets [CRB23], or rely on ground-truth correspon-
dences [APO21] which are challenging to obtain in practice.

To address the absence of large datasets and foster research
on (partial) shape correspondence, we introduce a procedural
data generation framework to generate diverse shape pairs from
a shape network. By simulating more realistic partiality patterns
using ray casting, we bridge the gap between existing synthetic
datasets and real-world partial shape correspondence problems.
Furthermore, we propose BeCoS, a carefully curated benchmark
based on existing datasets comprising diverse shape categories,
thus enabling to assess the performance of existing and foster the
development of novel methods. Through extensive experiments of
current state-of-the-art partial and full shape matching methods, we
demonstrate the limitations of partial methods and highlight the
need for further research in this area.

Contributions. We summarise our main contributions as follows:

e Shape Network for Correspondence Propagation: We unify
multiple existing mesh-based datasets through manual cross-
category annotations, constructing a large and diverse shape net-
work that indicates between which shapes correspondences exist.
This shape network facilitates the propagation of dense corre-
spondences and custom annotations across shapes, enhancing its
applicability to various shape analysis tasks.

e Scalable Framework for Partial Shape Correspondence: We
introduce a flexible and scalable framework that enables the gen-
eration of training examples for partial shape correspondence
tasks that is applicable to new datasets.

e Benchmark and Performance Analysis: As a concrete realiza-
tion of our framework, we present a challenging non-rigid shape
dataset, serving as a standardised benchmark for shape matching

methods. We further conduct an extensive evaluation of state-of-
the-art techniques on this benchmark, offering insights into their
strengths, limitations, and key challenges. Our results indicate
that partial shape matching remains an open problem, motivating
future research in the field.

2. Related Work
2.1. Datasets

Although several 3D shape datasets exist, we align with established
deformable shape matching literature by focusing on humanoid and
four-legged animal shapes. These categories support continuous
deformations and offer well-defined dense correspondences, making
them particularly suitable for our study. In the following, we provide
an overview of existing datasets for full-to-full (F2F), partial-to-full
(P2F), and partial-to-partial (P2P) shape matching datasets. Table[I]
summarises existing deformable shape matching datasets.

Full-to-Full Datasets. Full-to-full shape correspondence datasets,
such as FAUST [BRLBI14|] and SCAPE [[ASK*05], have been
essential in methodological progress on shape correspondence.
They encompass humans in various poses, initially emphasis-
ing point-wise correspondence recovery under isometric defor-
mations. SHREC’19 [MMR*19] was introduced to evaluate
the generalisation capabilities of methods to different mesh
connectivity on human scans. Datasets like TOSCA [BBKOS]|,
SMAL [ZKJIB17], SHREC’20 [DLR*20], and DeformingTh-
ings4D [MRSO22; [LTT*21]] have shifted the emphasis towards non-
isometric correspondence between various animal categories and
humanoid figurines. Although deep learning methods have achieved
state-of-the-art performance in shape correspondence, non-isometric
datasets remain relatively small and static, limiting their applicability
in training and evaluating deep learning-based correspondence meth-
ods. While full-to-full shape matching has received considerable
attention, the partial setting has been explored less (see Table[T).

Partial-to-Full Datasets. In this setting, a partial shape is de-
formably matched to a shape template with complete geometry.
SHREC’16 [CRB*16]], based on the TOSCA [|BBKOS|| dataset, was
the first benchmark for this problem setting. PFAUST [BDK23]] and
PFARM [APO21]] were later introduced using a similar approach
based on the FAUST [BRLB14]] and FARM [KMP*21]| datasets,
respectively. SHREC’20 [DLR*20] also contains a subset of full-to-
partial correspondence pairs.

Partial-to-Partial Datasets. Partial-to-partial shape matching in-
volves matching two partial shapes with unknown overlap, mak-
ing it considerably more challenging than partial-to-full matching.
In [APO21]] the authors proposed the first benchmark for this set-
ting with CP2P [APO21]| based on the SHREC’16 CUTS [CRB*16|]
benchmark. Recently, PSMAL [EGR*24] was introduced, extending
the SMAL [ZKJB17] dataset to include partial-to-partial correspon-
dence pairs.

As can be seen in Table [I} most existing datasets for partial shape
matching (P2F and P2P) focus only on near-isometric problem
settings. Furthermore, they contain only a limited number of shapes,
impeding the capabilities of learning-based approaches, particularly
when considering unsupervised settings for partial non-isometric
correspondence settings.
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Setting  Dataset # Unique  Shape Non

Shapes Type Isometry
FAUST [BRLB14] 100 2 X
SCAPE [ASK*05] 71 2 X
SMAL [ZKIB17! 49 =) v
DT4D Human [MRSO22i[LTT*21] 248 ? v
F2F DT4D Animal [MRSO22;|LTT*21] 1950 = X
TOSCA Human [BBKOS! 45 % X
TOSCA Four-legged [BBKOS] 37 B X
KIDS [RRW*14] 32 2 X
SHREC 20 [DLR*20 11 =) v/
SHREC’19 [MMR*19] 44 ? v/
SHREC’ 16 [BBKO8{/CRB*16] 76 %/E3 X
PFAUST [BDK23{[BRLB14] 10 ? X
POF FARM [KMP*21] 5 f X
PFARM [APO21; KMP*21] 28 b X
SHREC’20 [DLR*20) 14 = v
pop CP2P [APO21{/CRB*16] 76 %/E3 X
PSMAL [EGR*24]|ZKJB17 43 = v/
Both  BeCoS (ours) 2543 %/ v/

Table 1: An Overview of 3D Deformable Shape Datasets, cate-
gorised as full-to-full (F2F), partial-to-full (P2F) and partial-to-
partial (P2P), including the number of available shapes, shape
type (Humanoid for Four-legged %), and deformation class (Near-
Isometric (X) and Non-Isometric (V). Due to limited correspon-
dence pairs, FARM and PFARM are typically only used for evalu-
ation. Note that in previous datasets, not all unique shapes have
annotated correspondences, limiting the number of possible cor-
respondence pairs, e.g., DT4D Animal (maximum 62 452 corre-
spondence pairs) compared to our benchmark (maximum 1 414 179
correspondence pairs). As SHREC20 [DLR*20] contains three par-
tial shapes, it can be used as a partial-to-full or full-to-full dataset.

2.2. Methods for Shape Correspondence

We proceed by discussing a selection of shape matching methods
and refer to recent surveys [Sah20; DY DZ22]| for a more thorough
treatment. While point-cloud matching methods also exist [LH22;
BLZ*20; HGU*21;YQH*23|], we focus on mesh-based methods,
which are better aligned with the surface representations empha-
sised in our dataset. Methods addressing shape correspondence can
be categorised into axiomatic and learning-based. Among the ax-
iomatic approaches are discrete optimization methods [BST20] and
spectral methods utilising the powerful framework of functional
maps [OBS*12; RCB*17;[MRR*19]. However, the performance of
the latter class typically degrades as assumptions of isometry are
violated, such as in partial correspondence settings.

Full-to-Full Shape Matching. Spectral methods based on the
eigenfunctions of the Laplace-Beltrami Operator (LBO) have been
successful in full-to-full matching settings [OBS*12} LRR*17}
DS0O20; BXNL24} |CRB23], yielding a compact solution. In con-
trast to spectral approaches, discrete optimization formulations have
also been introduced for full-to-full matching [BST20; RSCB22;
RAC*24; RB24]. These algorithms often come with guaranteed
bounds on optimality, sometimes incorporating geometric consis-
tency constraints.

Partial-to-Full Shape Matching. Rodola et al. [RCB*17|] demon-
strate that for partial-to-full matching, the functional map has a
slanted diagonal structure, which has, for example, been used in
[LRB*16] to solve multi-part partial-to-partial correspondence; how-
ever, under the assumption that a full template is given. Several
methods also operate in the spectral domain in learning-based set-
tings [APO21}; |CB22; |CRB23]]. Other works do not use functional
map layer [BDK23;|BDK24| and explicitly tackle the partial-to-full
case.

Partial-to-Partial Shape Matching. Few works thus far explicitly
address the partial-to-partial matching setting, which is particularly
challenging as the overlapping region between shapes is unknown.
As such, the overlapping region must simultaneously be identi-
fied and matched under an unknown deformation. DPFM [APO21|]
demonstrates that spectral methods are applicable in this domain
using an additional attention mechanism, albeit using ground-truth
supervision for feature learning. In [WSSCI11] shape matching
is formulated as an integer linear program (ILP) over the space
of orientation-preserving diffeomorphisms. SM-COMB [RSCB22]
demonstrated that the latter constitutes a strong prior to guide partial-
to-partial matching. However, holes must be synthetically filled to
obtain a closed manifold. Recently, GC-PPSM [EGR*24] formu-
lated a geometrically consistent partial-to-partial shape matching
non-linear integer program. While both SM-COMB and GC-PPSM
are compatible with various surface descriptors, they achieve SOTA
results only with high-quality pre-trained input features (e.g. from
ULRSSM [CRB23J}), which can be prohibitive when these are not
available [RSCB22; [EGR*24].

2.3. Feature Descriptors for Shape Correspondence

Many axiomatic and learning-based methods for shape matching
rely on surface feature descriptors as guidance for correspondence
computation. Feature descriptors, like SHOT [ITSD10], can be hand-
crafted based on extrinsic quantities like XYZ-coordinates or surface
normals. Many surface descriptors are sensitive to surface degra-
dation, such as holes, or are not invariant under rotations, as is
the case for XYZ coordinates. The common intrinsic heat kernel
(HKS) [SOGO09] and wave kernel signatures (WKS) [ASC11] are in-
variant under isometric deformations; however, they are not effective
under partiality as the isometry assumption can be heavily violated.
On the other hand, methods like DiffusionNet [SACO22]] aim to
learn robust surface descriptors from data while still using some
features like XYZ coordinates or WKS descriptors as input. Consid-
ering that 3D shapes of many datasets are typically oriented in an
upright manner [BRLB14;|ASK*05; BBKO8; [RRW*14; DLR*20],
or generally positioned in a canonical pose [ENK*21] this can lead
to biased predictions. We discuss these biases in detail in Sec.[5.4}
Moreover, learned features require large training datasets and a high-
quality (self-)supervision signals which is challenging to achieve
under severe partiality. Since obtaining per-vertex feature descrip-
tors directly on 3D shapes is challenging, [WHC*16| addresses this
by establishing correspondences between 3D shapes through cor-
respondences between their 2D rendered images. Recent methods
[DMM24; DLH23; [KMS22; [FLN*24] leverage 2D image founda-
tion model features [ODM*23} RBL*22] from multiple rendered
views of a 3D shape to aggregate per-vertex features. However, such
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an approach can suffer from significant bias due to missing semantic
information in the rendered views.

3. Our Cross-Dataset Shape Matching Network

We propose a novel framework enabling the procedural generation of
shape matching instances with ground-truth correspondences based
on a given collection of 3D shapes. Our framework supports shapes
from multiple categories to generate shape matching instances of
non-isometric shape pairs. Furthermore, we manually link corre-
spondences between multiple datasets to vastly increase the diversity
and representativeness. Our framework provides researchers with
the possibility to propagate dense correspondences or custom an-
notations (e.g. left/right annotations, which we later consider as
demonstrative example) through the entire collection of 3D shapes.
Our pipeline supports re-meshing while preserving shape correspon-
dences within a collection and thus fosters discretisation-agnostic
method development. To overcome the limitations in realism and
sample size of existing partial shape benchmarks, we specifically
focus on partial shape generation. We use ray casting to generate
more realistic partial shapes than existing benchmarks based on
synthetic planar cuts and holes. We summarise the main ideas in
Fig.P2] A detailed description of our data generation can be found
in the supp. mat. Sec. 9] We apply our framework to construct a
new large benchmark combining different shape correspondence
datasets (Section[d) and show open challenges in the field through
an evaluation of existing methods on this benchmark, as detailed in

Sec.

3.1. Cross-Dataset/Category Correspondences

Current datasets commonly lack correspondences between different
categories, limiting data availability and diversity [BBKO8; LTT#21].
We address this shortcoming by manually establishing correspon-
dences across categories and across different datasets. To this end,
we treat each category for which a cross-category correspondence is
not available due to missing annotation as a separate shape group.
Then, we select a template shape for each group and manually
choose a set of corresponding landmarks on pairs of templates
using FaceForm [Fac23]| (see supp. mat. Sec. [9). In the case of
non-isometry, more manual landmarks are needed to guide the de-
formation, see Fig. [TT]in supp. mat. for an example. We then morph
one template into another to establish dense point-to-surface corre-
spondences (represented in barycentric coordinates to account for
different discretisations). Using the tightly aligned shapes, dense
correspondences are obtained by projecting points onto triangles of
the other surface. After the templates are in dense correspondence,
we propagate them to the entire shape category using the existing
intra-category correspondences. Overall, we build a shape network
of pairwise dense correspondences that cover all possible shape
templates (cross-category and cross-dataset). The detailed shape
network is presented on our project page, A colourmap visualization
of the correspondences can be seen in Fig.

3.2. Scaling of Shapes

Our framework integrates multiple mesh-based datasets, each with
varying shape scales. To harmonise these datasets, we manually

define scaling factors for each dataset, ensuring shapes are scaled
according to semantic criteria (e.g., the same species across datasets
have consistent sizes). Consequently, our framework offers diverse
non-isometrically deformed shapes with varying scaling factors
(e.g., a cat is smaller than an elephant; see Fig.[I]for examples).

3.3. Alignment of Shapes

Many correspondence datasets, specifically partial ones, such as
CP2P [APO21| and SHREC’16 [CRB*16|, keep shapes in the same
canonical pose during training and testing. This bias can prevent
methods from generalising to shapes under random rigid transfor-
mations, see also [ALO23||. As this assumption is often unrealistic
in real-world settings, we randomly rotate the shapes around the
z-axis (with respect to their canonical pose as present in the original
dataset) and thus generate shapes in random upright positions. We
show an ablation study about rotation in Sec.[5.4]

3.4. Custom Annotation Propagation

Shape annotations like movable parts labels used in robotics
[QYW*25] or part segmentation labels [KHS10; |(CCZZ24] are often
indispensable for data-driven training or evaluation. Our framework
allows for the propagation of any type of information defined on the
vertices from a few annotated examples to all shapes in the dataset.
By leveraging the shape network, we can find a path to the closest
annotated example from each shape, establishing correspondences
to a shape that offers ground-truth information. To demonstrate the
effectiveness of our method, we choose to propagate left/right anno-
tations from only 12 manually annotated shapes to the whole dataset
(see Figure[3). While in theory, even fewer annotations would suf-
fice, we selected 12 shapes to reduce propagation error (see the
examples in the supplementary material in Figure D).

3.5. Partiality Generation

Partiality via Ray Casting. Given a shape X, we introduce par-
tiality by simulating a simple unidirectional 3D scanning procedure
based on ray casting, as shown in Fig. 2|right. Doing so leads to a va-
riety of different partial shape boundaries and overlapping behaviour
(see Fig.[I]for examples). To perform ray casting, we first centre and
scale each full shape X to be within a fixed unit bounding box and
then choose random camera poses on the unit sphere. Partiality is
obtained by casting R rays from the sampled camera pose onto the
full shape X'. Rays stop upon hitting a triangle. All hit triangles that
form the largest connected component (by area) are kept to be part
of the partial shape X. Finally, each partial shape X is scaled and
translated back to its original size and location. To generate a shape
pair for partial-to-partial shape matching we get a partial shape
from a second full shape ).

Random camera poses could lead to non-existent or prohibitively
small overlap in the partial-to-partial matching setting. Therefore,
we sample two camera poses with the constraint that their maximum
angular disparity in both azimuth and elevation does not exceed o
degrees. Through this, we attain an overlap of a certain size to ensure
meaningful matching instances. For the overlap computation, we
rigidly align the full shapes X and )’ with Procrustes analysis using
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Figure 2: Left: We use a collection of multiple complete geometry datasets to generate novel shape pairs. Using FaceForm (see supplementary
material), we manually annotate cross-category and cross-dataset correspondences (black lines, see Sec. @ between (manually selected)
templates (shapes in red boxes). These are then combined with existing intra-dataset correspondences (blue dashed lines) to construct a shape
network, through which dense correspondences can be propagated. Right: Given an input shape with full geometry from our shape collection,
we first re-mesh the shape, then apply ray casting to simulate a unidirectional 3D scanning procedure to introduce partiality (see Sec. @,

and finally apply a deterministic random rotation.

@ )

Figure 3: Our framework allows for the propagation of custom
annotations throughout all shapes. We show the case of left/right
annotations. (a): Left/Right annotations are manually annotated
on the shape considered as template. (b): Left/Right annotations
are propagated from the closest template in the shape network (see
Sec. @in supp. mat. for more examples).

the given correspondences to ensure that both shapes are in a similar

position i.e. both shapes are up-right and facing the same direction.

Then, we perform the previously described partiality generation on
both shapes to generate X and Y. Subsequently, we quantify the
overlap as the percentage of vertices from A that are mapped to
and vice-versa. If neither of these quantities falls within a predefined
range (see Sec.ﬂfor details), the process proceeds with new random
camera poses until the overlap meets the specified criteria, or until a
maximum of m iterations is reached. In the latter case, the partial
shapes whose overlap is the closest to the desired range are selected
(see Sec.[0.3]in supp. mat. for more details).

Flexible Generation of Shape Matching Instances. Existing
partial shape datasets provide a precomputed and fixed number

of holes/cuts [CRB¥*16; [BDK23} [KMP*21; [APO21} [DLR*20}

EGR*24]|, creating partial shape pairs from identical meshes in

varying poses. Instead, our proposed framework can generate partial
shapes from a larger and more diverse pool of shapes, allowing
for pairing compatible shapes from different categories, potentially
originating from different datasets. This creates a more challenging
scenario encompassing simultaneous non-isometric deformations
and partiality, representing an important step towards more realistic
settings. Furthermore, our framework introduces more variety by
using different camera poses for ray casting and re-meshing shapes
to different resolutions.

3.6. Semantic Missing Parts

By combining multiple categories and datasets, we encounter cases
where dense correspondences cannot be reliably established between
certain parts of shapes without introducing inaccuracies (e.g., match-
ing a deer’s horn to a horse’s head). While such ambiguities can be
managed when considering semantic correspondences [AEOW23],
they remain problematic for dense correspondences. To address this,
for the first time we create large cross-dataset correspondences with
semantic missing parts annotations, as shown in Fig. 4] To this end,
we modify our pipeline described in Sec.[3.1]by manually removing
the semantic missing parts from the shapes and match the rest of
the shapes to get the dense correspondences. We show an example
in Fig. [T1]in supp. mat. This creates a novel objective for shape
matching methods that warrants future research.

4. The BeCoS Benchmark

In addition to the procedural data generation framework, we propose
the BeCoS benchmark, which is a specific instantiation of our gen-
eral framework introduced in Sec.[3l BeCoS contains realistic full
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Source Target Source Target

Figure 4: For the first time we define semantic missing parts in full
shapes. The horse and puma do not possess a human upper body or
horns, making these features unmatchable in the centaur and cow,
respectively.

and partial shapes from established datasets with cross-category and
cross-dataset correspondences. The purpose of BeCosS is to chal-
lenge current state-of-the-art shape matching methods, specifically
in the partial case, and facilitate progress in the field through a stan-
dardised evaluation. To create our benchmark, we apply the pipeline
introduced in Sec.[3]on a combination of several existing datasets.
We train and evaluate various existing shape correspondence meth-
ods on BeCoS (see Sec. @ for an overview), demonstrating the
shortcomings of existing methods, particularly for partial-to-partial
matching.

Datasets. BeCoS is composed of seven different datasets
with four-legged creatures and humanoid shapes encompass-
ing challenging and diverse shape matching scenarios for both
isometric and non-isometric deformations: TOSCA [BBKOS],
FAUST [BRLBI4], SCAPE [ASK*05], KIDS [RRW¥*14],
DT4D [MRSO22], SMAL [ZKJB17] and SHREC’20 [DLR*20].
See Table[lfor more information about the used datasets. From these
datasets, we use a total of 2543 shapes (496 are humanoid shapes and
2047 are four-legged shapes) to generate pairwise matching prob-
lems. We partition our dataset into predefined training/validation/test
splits, ensuring evaluation is performed on unseen categories. To
combat dataset imbalance, we oversample the smaller datasets in
our training set. The number of shape matching instances in the
train/validation/test splits is 10185/137/142. We limit the test set
size to easily compare to axiomatic methods, which are often com-
putationally heavy.

Predefined Benchmark Parameters. We choose the following
parameters in the data generation pipeline to create a challeng-
ing but reasonable benchmark. For re-meshing, we use quadric
decimation [[GH97| and we fix the range of vertices to a random
number between 9000— 10,000 to facilitate training of current super-
vised/unsupervised methods and limit memory consumption. Note
that re-meshing the same shape multiple times results in different
re-meshed versions of the shape due to the random selection of the
number of vertices. Our main setting introduces a random rotation
around the z-axis, assuming each shape has a natural ‘upright’ direc-
tion. The maximum camera angle for the partial-to-partial setting is
setto o0 = %. Similar to [APO21] and [EGR*24], these parameters
are chosen to maintain an overlap of 10% — 90%, using m = 10
maximum iterations (see supp. mat. Sec. [9.3| for distribution of
overlap). All default parameters to generate the BeCoS benchmark

are explicitly stated and explained in details in our implementation
repository.

The parameter configuration of BeCoS is chosen to significantly
challenge state-of-the-art methods while still being attainable. In
the future, if the benchmark is saturated due to the development of
more accurate shape matching methods, the customisable nature
of our framework enables a straightforward construction of more
challenging BeCoS variants (e.g. random rotation around all axes).

Methods Type ~ F2F P2F  pop MR
features
GeomFMaps [DSO20] Sup v v X wks, Xyz
DPFM [APO21] Sup/Unsup v v v wks, Xyz
ULRSSM [CRB23]| Unsup v v X wks, Xyz
Smooth Shells [ELC20] Axio v X X shot
PFM [RCB*17] Axio X v X shot
SM-COMB [RSCB22]  Axio X X v XyzZ
GC-PPSM [EGR*24| Axio X X v Xyz

Table 2: Overview of baselines with their methodology type
(Supervised, Unsupervised or Axiomatic), their possible prob-
lem statements (F2F: Full-to-Full, P2F: Partial-to-Full and
P2P: Partial-to-Partial) and their corresponding input features.
All default values are used for all baselines to produce the results
shown in this paper.

5. Evaluation

We evaluate different shape matching methods, specifically show-
casing the difficulty posed by partiality. We additionally present
numerous ablation studies and further experiments with custom
annotations (left/right annotations), showcasing the challenges and
possibilities of BeCos.

5.1. Evaluation Metrics

For quantitative evaluation, we consider well-established quantita-
tive measures: we use the Geodesic Error to quantify the corre-
spondence accuracy, as well as the Intersection over Union (IoU)
and the F1 Score to quantify the overlap. For the ablation study on
custom annotation with left/right prediction, we use a Left/Right
Accuracy metric.

Geodesic Error. We evaluate the geodesic error of correspondences
using the Princeton Protocol [KLF11]). This evaluation entails nor-
malising the geodesic error between the ground truth and the com-
puted correspondences by the shape diameter, defined as the square
root of the area of the target shape. For partial shapes, we use the
square root of the area of their corresponding full shape. To handle
the partial-to-partial matching paradigm, we follow [EGR*24]| and
set an infinite geodesic error for unmatched vertices that should
be matched and for vertices that are matched but should not be. In
contrast to the partial-to-full (P2F) and full-to-full (F2F) settings,
where no overlapping region is determined, the overlapping region
prediction affects the geodesic error curve for the partial-to-partial
setting.

Intersection over Union. To evaluate the quality of the overlapping
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Figure 5: Cross-dataset and cross-category shape matching results visualised via colour transfer (red denotes missing parts). All baselines
show sub-optimal performance on all three settings (some examples are highlighted with blue circles). The green square shows the semantic
missing parts between the source and target mesh. As GC-PPSM and SM-COMB are solved on very low resolution when upsampling, we do

nearest neighbour search in the features space of the matched patches (see |[EGR*24] for more information), ensuring geometric consistency
in low resolution. Both methods show patch-wise inaccuracies due to this low resolution solution.
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Figure 6: We show geodesic errors (AUC x100) for the different methods on different settings: F2F (left), P2F (middle), P2P (right). The
partial-to-partial setting is the most difficult and more realistic case, in which errors are computed for all vertices. Unmatched vertices are set
to an infinite geodesic error; matchings that predict wrong overlaps lead to curves that do not reach 100%.

areas induced by a matching, we consider the Intersection over
Union (IoU). To this end, we define P € {0, 1}(\V\><1) and G €
{0, 1}(|V| *1) as vectors (predicted and ground truth, respectively),
indicating which vertices are part of the matching. We quantitatively

evaluate the overlapping region in the partial-to-partial setting using
_ |PNG]
~ [PUG[”

the intersection over union (IoU), calculated as IoU

F1 Score. To give further insight into the overlap prediction, we
use the F1 score. It integrates precision (Z%) and recall (Z%)
2-precision-recall
precision+recall
value spans [0, 1] with 1 indicating a perfect precision and recall.

through the harmonic mean: F1 score = . Its possible

Left/Right Accuracy. For a shape X’ with N vertices, the left/right
accuracy is defined as

=x") (1

1
acey = Y 1(xi=
ieEN

where ; is the left/right prediction for the i-th vertex in X', 1 is the
indicator function, x;-gt is the ground truth of the left/right annotation
of the i-th vertex in X'. We use a similar approach for the partial-
to-partial case as when using the geodesic error. For unmatched
vertices that should be matched and vertices that are matched but
should not be, we set an accuracy of 0.

5.2. Baselines

We choose a mix of learning-based and axiomatic methods for
each of the three settings (full-to-full, partial-to-full and partial-to-
partial), including SOTA methods in the supervised, unsupervised
and axiomatic case. We train all learning-based methods on BeCoS.
We show an overview of the methods in Table 2] For the partial-
to-partial problem setting, an unsupervised approach has not yet
been proposed in the literature. Therefore, we include two axiomatic
methods instead. One reason that learning-based approaches are
not extensively used for partial-to-partial shape matching is the
lack of sufficient training data, which we explicitly address in this
work. The severe difficulty of partial-to-partial shape matching is
manifested by a significant performance degradation compared to
other matching settings, see Fig. [f]

5.3. Results

We show the results on full-to-full, partial-to-full and partial-to-
partial settings in Fig. [f We additionally show the quality of the
overlapping region of the partial-to-partial case in Table[3] Qualita-
tive results can be found in Fig. 5]

Discussion. While the learning-based methods yield mostly promis-
ing results on the full geometries (see Fig. [5|F2F), existing methods
struggle with the challenging partial scenarios (P2F and P2P) pre-
sented in our benchmark, demonstrating a need for further method-
ological advances: In the partial-to-partial case DPFM returns noisy
overlapping region predictions (see Fig. [5|P2P, third column). Both
SM-COMB and GC-PPSM perform poorly, probably because they
rely on informative and reliable feature descriptors for computing
the matching energy. Since these are not available for BeCoS, we
resort to XYZ coordinates for computing respective energies (see
supp. mat. Sec. [8.1] for a justification and analysis of this choice). In
the partial-to-full case, both axiomatic and unsupervised methods
return bad correspondences, both qualitatively (see Fig. 5] P2F, third
and fifth column) and quantitatively (see Fig. |§|middle). We discuss
further in Sec.[5.4] why our benchmark is so challenging for these
settings. We believe that our work will contribute to the development
of sophisticated and reliable machine learning approaches for these
partial shape matching settings.

DPFM SM-COMB GC-PPSM
mloU (1) 46.52 46.91 49.24
F1 Score(1) 60.28 60.61 62.42

Table 3: Overlapping Region Prediction: We show the mean loU
(x100) and F1 Score (x100) of the partial-to-partial shape matching
methods on BeCoS.

5.4. Ablation Studies

Multiple challenges can be simultaneously present in the shape
matching problem: partiality, varying scale, non-isometry, different
orientations/poses, and non-alignment of pairs of shapes. Previous
datasets, especially partial shape matching datasets, simplify these
challenges (e.g. by aligning the shapes). In contrast, we include all
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the above mentioned challenges in our benchmark, which makes it
significantly more challenging.

In order to separate the effects of partiality, scaling and rotation
on existing methods we conduct two ablation studies. First, we
present the effects of the scaling challenge. Then, we demonstrate
how random rotations adversely affect the performance of existing
SOTA methods for partial-to-full shape matching.

Methods Default (1)  Normalised (1)
GeomFmaps (Sup) 88.72 88.96 (-0.24)
DPFM (Sup) 90.20 91.47 (-1.27)
F2F  DPFM (Unsup) 88.75 89.40 (-0.65)
ULRSSM (Unsup) 87.45 94.06 (-6.61)
Smooth Shells (Axio) 73.23 73.93 (-0.7)
GeomFmaps (Sup) 85.35 89.92 (-4.57)
DPFM (Sup) 85.44 90.02 (-4.58)
P2F  DPFM (Unsup) 62.72 61.85 (+0.87)
ULRSSM (Unsup) 60.93 61.00 (-0.07)
PFM (Axio) 60.70 62.83 (-2.03)
DPFM (Sup) 38.11 39.58 (-1.47)
P2P  SM-COMB (Axio) 30.03 25.09 (+4.94)
GC-PPSM (Axio) 34.29 32.81 (+1.48)

Table 4: Scale Analysis: Correspondence prediction accuracy mea-
sured by Area-under-the-curve (AUC x100) for baselines on all
three shape matching settings. Unsupervised ULRSSM in the full-to-
full setting, supervised GeomFmaps in partial-to-full and DPFM in
all settings exhibit a notable performance drop (underlined) in the
default compared to the normalised scale setting. The best perform-
ing method in each setting is in bold.

Scaling of Shapes. To illustrate the effects of scaling, we com-
pare the performance of multiple shape matching methods using
the default setting of BeCoS (as discussed in Sec. and a nor-
malised setting, where the surface area of each (full) shape in the
benchmark is normalised to 1. The results in Table 4 show that the
performance drops when using the default setting for most methods.
While full-to-full methods can easily handle the full-to-full variant
of BeCoS under the default setting by normalising the surface area
to 1, resulting in similarly scaled shapes. This is non-trivial for the
partial-to-full and partial-to-partial settings, as each partial shape
represents an unknown percentage of its full counterpart, making the
normalisation non-trivial. Using the normalised surface area under
these two partial settings thus increases performance, especially for
the supervised learning-based methods DPFM and GeomFmaps. On
the other hand, the axiomatic and unsupervised methods generally
perform poorly on BeCoS, making it hard to draw a conclusion
about the methods’ performance in the normalised and default set-
tings.

Alignment of Shapes. To demonstrate the impact of shape align-
ment on the performance of shape matching methods, we compare
two different settings to probe existing methods for robustness to
shape rotation on the partial-to-full setting:

1. With rotation: Our default realistic benchmark setting with rota-
tion, where all shapes in the train and test sets have a random

rotation around the z-axis (i.e. all pairs of shapes are in different
poses).

2. Without rotation: The train and test are not rotated, and shapes
are kept as present in their respective datasets (most shapes are
in a canonical pose).

We select the partial-to-full methods for this ablation, as the
partial-to-partial methods perform prohibitively poorly, resulting
in a mostly random prediction accuracy. Many full-to-full methods
use wave kernel signature features [ASC11] as input, making them
independent of rotations.

We show the results of our ablation in Fig.|7} A noticeable decline
in performance is observed when rotation is introduced compared to
when the shapes are kept as present in their datasets. This indicates
that current methods benefit from biased datasets. The bias errantly
favours XYZ features as input features when shapes are all aligned
in a canonical pose. While reliable intrinsic (and therefore rotation-
invariant) features such as wave kernel signature (wks) exist, these
are not robust to partiality. This presents a challenge for future
research in the domain of partial shape matching involving rotated
partial shapes. One important question is how to define rotation-
invariant feature descriptors that are robust to partiality. We believe
our benchmark may serve as an important contribution to tackling
this challenge.
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Figure 7: Rotation evaluation for the test set of BeCoS presented
in Sec. 0.4 with (solid) and without (dashed) rotation. Unsupervised
methods struggle the most with rotation, whereas supervised meth-
ods can better accommodate rotational changes in the data due to
their supervision signals.

5.5. Custom Annotations: Left/Right Predictions

As a proof of concept, we show our framework’s ability to propagate
custom annotations throughout the dataset. To this end, we provide
a quantitative evaluation of the performance of shape matching
methods in predicting left/right parts on our benchmark. In this
experiment, we use the left/right accuracy as evaluation metric (see
Sec. [5.1] for more details) and compare all baselines presented in
Sec.[5.2] We present the results on our benchmark in Table[5] Similar
to the dense correspondence prediction, the supervised methods
perform best in this task. While unsupervised methods perform
well in full-to-full shape matching, in the partial-to-full case, they
perform poorly due to the XYZ coordinates as input (shapes are
by default randomly rotated around the x-axis in our benchmark).
Similarly, the partial-to-partial methods perform unconvincingly.
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Methods Left/Right Accuracy (1)
GeomFmaps (Sup) 88.09

FOF DPFM (Sup) 89.05
DPFM (Unsup) 86.92
ULRSSM (Unsup) 82.13
Smooth Shells (Axio) 72.88
GeomFmaps (Sup) 78.96
DPFM (Sup) 80.84

P2F DPEM (Unsup) 51.24
ULRSSM (Unsup) 53.39
PFM (Axio) 52.85
DPFM (Sup) 29.17

P2P  SM-COMB (Axio) 14.23
GC-PPSM (Axio) 16.82

Table 5: Chirality benchmark: While methods in the full-to-full
setting and supervised methods in the partial-to-full setting perform
well, unsupervised methods in the partial-to-full setting and all
methods in the partial-to-partial setting perform poorly.

6. Discussion and Future Work

The cross-category and cross-dataset correspondences of BeCoS
are generated pairwise for the selected template shapes. Although
they are of good quality, for cross-category shapes they may give
rise to correspondence ambiguity (e.g. hooves to paws). Ambiguities
may potentially accumulate if many pairwise ground truth corre-
spondences are chained (i.e. for shapes that are distant in our shape
network of shapes), which deteriorates the composed ground truth
quality (see left example in Figure [9]in the supplementary mate-
rial). This could potentially be improved by incorporating cycle-
consistency or synchronisation techniques [HG13} PKS13; [ BCT21]]
in the process of generating ground truth correspondences.

7. Conclusion

While several shape matching datasets exist, they are typically static
and limited in size, which constrains their adaptability to diverse
problem settings and custom use cases. To address this we con-
nect multiple existing mesh-based datasets through manual cross-
category annotations, enabling dense correspondence and annotation
propagation across a diverse set of shapes. Building on this founda-
tion, we introduced a scalable framework for generating unlimited
training instances for partial shape correspondence, simulating real-
istic occlusions and semantic variability. As a concrete instantiation,
we release a challenging non-rigid shape surface matching bench-
mark and provided a comprehensive evaluation of current state-
of-the-art methods. Our findings highlight persistent challenges,
particularly in partial shape matching, and underscore the need for
more robust and generalizable solutions. We hope our benchmark
and framework will foster future advancements in shape matching
research.
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Supplementary Material

The supplementary material provides more information about our
framework and the BeCoS benchmark. In Sec. [8] we show addi-
tional results on the partial-to-partial (P2P) setting and qualitative
results of custom annotation propagation. In Sec. [0} we provide
details on the procedure followed to create our framework. Addi-
tionally, we present details about the BeCoS benchmark in Sec.[T0]
We discuss the licenses of our framework and the assets used to
create the BeCoS benchmark and our long-term preservation plan in
Sec. [T} In Sec.[12] we provide information about the computation
resources used for the baseline methods.

8. The BeCoS Benchmark: Additional Results
8.1. Alternative Energies on the Partial-to-Partial Setting

In the main paper, we use XYZ coordinates for the axiomatic meth-
ods SM-COMB and GC-PPSM for the partial-
to-partial setting. While these methods work best with learned fea-
tures (e.g. unsupervised features from ULRSSM [CRB23]), the
latter features are not reliable for our challenging benchmark dataset
(see Fig.[f]in the main paper for the performance of ULRSSM in the
partial-to-full setting). In our case, we found that XYZ coordinates
as feature descriptors are most suited for our benchmark. We com-
pare the XYZ features to the original energy formulation used for
SM-COMB (a combination of bending and membrane energy) and
the rotation-invariant SHOT features. We show the results in Fig.
for the geodesic distance comparison and Table[g]for the overlapping
region prediction. Both show that XYZ as input features work best
in the given setting. This is the case because in BeCoS the shapes
are rotated only around the z-axis, which leaves the z-coordinates as
reliable information. While this is not always a realistic setting, as
it would not work for completely random rotations, we choose this
setting to be able to evaluate the axiomatic methods in a (reason-
ably) meaningful manner. As these methods will benefit from better
features, we hope to encourage further research in this direction.

Metrics
Method mloU (1) FI Score ()
XYZ 46.91 60.61
SM-COMB | Original | 23.81 33.78
Shot 24.47 34.29
XYZ 49.24 62.42
GC-PPSM | Original | 43.69 53.72
Shot 39.89 51.20

Table 6: Overlapping Region Prediction: We show the mean loU
(x100) and F1 Score (x100) of the partial-to-partial shape matching
methods. Out of the three options, XYZ features are the input features
that suit both methods the best.

PARTIAL-TO-PARTIAL - ENERGY FORMULATION
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Figure 8: We compare different energy formulations as input for
SM-COMB and GC-PPSM. For both methods, XYZ coordinates
work best as input features.

8.2. Custom Annotation Propagation

We show more qualitative results of Left/Right annotation propaga-
tion using our framework in Fig.[J] We also include failure cases of
the annotation propagation. This propagation relies on the manually
created dense correspondence between templates in our framework;
small errors caused by the manual annotation get amplified through-
out the propagation and cause unwanted artefacts, especially in

regions like the tails of animals.

'
Figure 9: Our framework allows for the propagation of custom
annotations throughout all shapes. We show the case of left/right

annotations. The Left/Right annotations exhibit errors in thin parts
of the shapes (e.g. tails of animals).
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9. Details on the Procedural Data Generation
9.1. Correspondence Generation

This procedure is similar to the one used by [MRSO22], and we use
the FaceForm software with an academic license [Fac23||. The steps
of our procedure can be summarised as follows:

1. We select a template for each dataset with cross-category cor-
respondence and a template for each category in each dataset
that does not have cross-category correspondences. The template
should ideally be in a neutral A-or T-pose for humanoid shapes
and in an "upright" standing position for four-legged animals.

2. We build a shape network connecting all templates in such a way
that the semantic differences between two connected shapes are
small. This makes the morphing step easier. For example, we try
to connect all cats from all datasets together (see the interactive
graph in our project page).

3. For each edge in the shape network, we load the two connected
templates A and B in FaceForm using the "LoadGeom" module
(see Fig.[TT](c)).

4. Some template shapes do not completely match the other tem-
plate as some parts are missing (see Fig.[T2). For these shapes,
we first cut the shapes so that we get a matchable and a seman-
tic missing part. For these template shapes, we only load the
matchable part in FaceForm.

5. We connect the two modules to a "SelectPointPairs" module
that allows manually selecting corresponding landmarks on the
templates A and B (see Fig.[T1](a)). Depending on the semantic
difference between the two template shapes, we select between
15 and 95 landmarks.

6. Once the landmarks are placed manually on both shapes, we use
the "Wrapping" module on FaceForm to morph template A to
template B. This process took around 25 hours of manual work.

7. We then save the morphed template A (see Fig. (b)).

8. To get the correspondences between the two shapes, we find
for every vertex A the closest triangle of template shape B. We
then project every vertex of A on the closest triangle and return
the barycentric coordinates. The correspondences of semantic
missing parts are set to —1.

9. Once steps [3-7] are done for all edges in the tree, we are able to
generate the correspondences between any two input shapes.

9.2. Correspondence Computation between a Shape Pair

Given any two shapes in the dataset, we compute the ground-truth
correspondences between them using the following steps: First, we
extract the path between those two shapes over the given template
shapes. In the interactive shape network on our project page, we
show the chosen templates and their inter-connectivity. We then
extract the correspondences between any two shapes in the shape
network either through the given datasets or by using our manually
annotated correspondences. We then propagate the correspondences
along the path.

9.3. Overlap Region for the P2P Setting

For the overlap computation, we rigidly align the shapes A and )
using the given correspondences to ensure that both partial shapes
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are semantically similar and perform the in the main paper described
partiality generation on both shapes. Subsequently, we quantify the
overlap as the percentage of vertices from X that are mapped to Y
and vice-versa (X and ) are the partial shape generated using ray
casting from shapes X and ), respectively). If both overlaps do not
fall within a predefined range, the process iterates with new random
camera poses until the overlap meets the specified criteria, or until a
maximum of m iterations is reached. In the latter case, the partial
shapes whose overlap is the closest to the desired range are selected.

In the BeCoS default configuration for the partial-to-partial set-
ting, shapes have an overlap between 10% and 90%. We show a
histogram of the distribution of the overlapping region of each shape
pair going from shape X’ to shape ) and vice-versa (see Fig. [T0).

HISTOGRAM OF OVERLAPPING REGIONS - P2P
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Figure 10: Partial-to-Partial histogram of overlapping region of
BeCoS. The pairs that are below 10% and the ones above 90% are
the ones that reached the maximum number of iterations m = 10.
Our framework produces partial-to-partial shapes, creating this
histogram when the predefined parameters discussed in Sec.[dof the
main paper are used.

10. Details about the BeCoS Benchmark and the Framework

As mentioned in the main paper, we use seven different full datasets
in our benchmark. We use each dataset entirely with two excep-
tions: For TOSCA we exclude the gorilla as it is excluded from
most shape matching analyses due to its difficulty. The original
dataset [LTT*21]] of DT4D provides animated meshes for each cate-
gory with a lot of categories. Some categories in the original dataset
are difficult to semantically match to other categories, e.g. drag-
ons. Therefore, we use the same categories that were selected from
DT4D-Matching [MRSO22]. This dataset provides its own cross-
dataset correspondences but only for a version of the dataset where
each mesh is around 8000 vertices. Since the shapes are only re-
meshed and not in the original resolution, we use the original an-
imated files but extract the same categories and frames from the
animation as DT4D-Matching. This ensures that we have higher
resolution input shapes and less error propagation along the corre-
spondence paths, as the shapes in the same category have the same
triangulation. We end up with 39 categories for four-legged animals
and eight categories of humanoid shapes.


https://nafieamrani.github.io/BeCoS/
https://becos-authors.github.io/BeCoS/embedded_page.html
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Figure 11: Usage of FaceForm to generate the cross-category and cross-dataset ground-truth correspondences. (a) Given two templates, we
manually place corresponding landmarks on both templates. (b) Overlap of the template A (blue) and the morphed template B (green) on top
of each other after running the "Wrapping" module. (c) and (d) We show a non-isometric deformation between a puma and rhino shape. Note
that the rhino is missing its horn which is considered a missing semantic part and we only match the rhino shape without its horn to the puma.
(e) The modules used to perform the morphing of template B to template A.
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Figure 12: Correspondence between pairs with semantic missing parts. The colour is transferred from the left shape to the right shape. The
red parts are the parts that cannot be semantically matched between the two shapes. (a) and (b) The centaur shape is a special case that can
be matched to both humanoid and four-legged animals. (c) The elephant’s tusks and ears cannot be matched to a sheep. (d), (e) and (f) The
horns are not always matched between shapes. (g) The rhino’s horn is not semantically matched to any other animal in BeCoS. (h) The cat’s

long tail is not matched to the buck’s small fluffy tail.
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11. Hosting, Licences, Maintenance Plan & Long-Term
Preservation of BeCoS

Our pipeline is based on existing 3D shape datasets. The original
datasets have to be downloaded and can only be used with the
corresponding licences from the original datasets. We ensure this
correct usage by letting the user download the data directly from the
corresponding websites. Our code for generating the (partial) shape
pairs will be available on GitHub with a CC BY-NC-SA 4.0 (open
source for non-commercial use) licence.

Our main product is a publicly accessible framework, which we
intend to permanently host on our GitHub repository. Since the
BeCoS benchmark is a specific instantiation of this universal frame-
work, its accessibility depends on the availability of certain 3D shape
datasets. The biggest risk regarding accessibility is therefore related
to the BeCoS benchmark in case some of the involved 3D shape
datasets become unavailable. However, given that the 3D shape
datasets used in our framework are well-established, we anticipate
their continued public availability. In the event that a dataset is taken
down by the originators, our framework’s functionality will remain
intact for the remaining datasets.

12. Compute and Resources

We use an internal cluster to compute the given results with the
different models. For SM-COMB and GC-PPSM, we use an Intel
Xeon E5-2697 with 16 cores and up to 36GB of RAM per run.
For the learning based methods, we use an Intel Xeon E5-2697
with 16 cores and one Nvidia Titan GPU with 12G VRAM. As
PFM'’s precompiled code runs only on Windows, we use an Intel
17-14700KF with 20 cores and up to 32GB of RAM. We present the
compute time per method used in our paper in Table.[7]

Method Training  Evaluation time

time (per shape pair)
DPFM [APO21] 8-20h 1.1s
SM-COMB [RSCB22] N/A 0.08h
GC-PPSM [EGR*24| N/A 2.5h
PFM [RCB*17| N/A 0.2h
ULRSSM [CRB23| 16-86h 20s
Smooth Shells [ELC20] N/A 0.2h
GeomFMaps [DSO20] 3-7h 1.1s

Table 7: A breakdown of the compute time per method presented
as a baseline in our work. Axiomatic methods do not require any
training time. We show the training time for the entire training data
and the evaluation time per shape pair.

13. All Framework Options

In Table[8] we provide a full list of the general options available in
our framework. We invite the reader to check our GitHub repository
for further information.

17 of 18


https://creativecommons.org/licenses/by-nc-sa/4.0/

180of 18 V. Ehm, N. El Amrani et al. / BeCoS: Beyond Complete Shapes

Table 8: All options in the main configuration file. The default values of these options are stored on our framework code and allow the
generation of the BeCoS benchmark.

Option | Description
data_dir | Path to data directory.
datasets | True if the dataset is used.
combinations Type of shapes to generate, possible values:

human, four-legged, human_centaur,
four-legged_centaur, or all.

setting The setting to generate, possible values:
full_full/partial_full/partial_partial.

remesh True if the shapes should be re-meshed after
loading.
cam_pos_regime Specifies how far the pair of camera poses are

apart, possible values: high/medium/low.

store_vis If True, store visualization of each pair
of shapes.

show_output If True, an open3d visualization is shown during
generation.

original_settings If True, multiple assertions are activated to

ensure that BeCosS is generated.

use_precompute_remeshing If True, use the cached re-meshed shapes
if available.
update_precomputed_remeshed If True, update the caching directory for

re-meshed meshes.

use_precomputed_partial_raycasting If True, use the cached triangle IDs of each
partial shape if available.

update_precomputed_raycasting If True, update the caching directory for triangle
IDs.
one_axis_rotation If True, perform a random rotation around the

z-axis after generating the pair of shapes.

n_cam_pos The number of camera poses to sample to get

within the desired range of overlap.

min_overlap | Minimum overalp between partial shapes desired.

max_overlap | Maximum overalp between partial shapes desired.
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