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Figure 1. Our method enables dynamic human avatar generation via diffusion in network weight space. First, we optimize a set of
UNets, each representing an individual dynamic human avatar (top left). Next, we train a transformer network to model a diffusion process
over these optimized network weights (top right). At inference time, our approach samples new network weights for real-time, controllable
dynamic human avatar rendering by predicting pose-dependent 3D Gaussian Splatting based on a given pose (bottom).

Abstract

Creating human avatars is a highly desirable yet chal-
lenging task. Recent advancements in radiance field ren-
dering have achieved unprecedented photorealism and real-
time performance for personalized dynamic human avatars.
However, these approaches are typically limited to person-
specific rendering models trained on multi-view video data
for a single individual, limiting their ability to generalize
across different identities. On the other hand, generative
approaches leveraging prior knowledge from pre-trained
2D diffusion models can produce cartoonish, static human
avatars, which are animated through simple skeleton-based

articulation. Therefore, the avatars generated by these
methods suffer from lower rendering quality compared to
person-specific rendering methods and fail to capture pose-
dependent deformations such as cloth wrinkles. In this pa-
per, we propose a novel approach that unites the strengths
of person-specific rendering and diffusion-based generative
modeling to enable dynamic human avatar generation with
both high photorealism and realistic pose-dependent defor-
mations. Our method follows a two-stage pipeline: first, we
optimize a set of person-specific UNets, with each network
representing a dynamic human avatar that captures intri-
cate pose-dependent deformations. In the second stage, we
train a hyper diffusion model over the optimized network
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weights. During inference, our method generates network
weights for real-time, controllable rendering of dynamic hu-
man avatars. Using a large-scale, cross-identity, multi-view
video dataset, we demonstrate that our approach outper-
forms state-of-the-art human avatar generation methods.

1. Introduction
Generating high-quality renderings of humans is a crucial
challenge in computer vision and computer graphics, with
numerous real-world applications in remote communica-
tion, movies, gaming, and immersive experiences in aug-
mented as well as virtual reality. Traditionally, generating
digital avatars from real-world data requires complicated
hardware setups, manual efforts from skilled artists, and ad-
vanced physical-based rendering techniques to synthesize
the final image [2, 18].

With the advancement of neural radiance fields and sub-
sequent works [28, 48, 79, 80], recent methods [19, 33,
40, 50, 96] have focused on learning photorealistic and
controllable human avatars directly from calibrated multi-
view videos. Although these approaches achieve unprece-
dented levels of photorealism, they are still person-specific,
meaning that for each individual human a dense multi-view
video has to be captured, data has to be processed and an-
notated, and a dedicated neural model has to be trained
from scratch. This process is neither scalable nor fast and
resource-efficient as these steps can easily take multiple
days [19, 40].

Meanwhile, recent generative methods [16, 54, 61] have
made significant progress in generalization quality and scal-
ability, driven by advances in generative diffusion mod-
els [21, 39, 68]. To this end, recent avatar generation meth-
ods [7, 26, 30, 38, 41] attempted to distill prior knowledge
from 2D image diffusion models through score distillation
sampling [55]. Despite their compelling results, the render-
ing quality remains significantly lower than that of person-
specific rendering methods. Notably, their rendered videos
are unable to capture skeletal pose-dependent deformations
like clothing wrinkles and appearance variations, e.g. cast
shadows, due to the limitations of simple skeleton-based ar-
ticulation. To address the limitations mentioned above, for
the first time we aim to unify the person-specific rendering
method and the diffusion-based generation model to gener-
ate photorealistic real-time renderings across different indi-
viduals, which faithfully captures pose-dependent deforma-
tions.

To this end, we represent the digital human as 3D Gaus-
sians [28] that are parameterized in UV space [23, 50, 63,
75]. In contrast to person-specific rendering methods rely-
ing on individual mesh templates [37, 50], we use a para-
metric human body model (i.e. SMPL-X [44, 51]) to of-
fer a canonical template and a consistent UV space across

individuals [93]. However, instead of directly optimizing
the 3D Gaussian parameters defined in UV space for each
individual, we optimize a UNet [62] that maps the human
pose into the Gaussian parameters defined in UV space. To
this end, our method is capable of capturing pose-dependent
deformation by predicting motion-aware 3D Gaussian pa-
rameters. After optimizing the person-specific network for
all individuals, we propose a hyper diffusion model, which
generates network weights of the optimized UNet rather
than 3D Gaussian parameters directly. The motivation for
training a diffusion model in this network weight space is
two fold: (1) the single network encodes comprehensive
pose-dependent 3D Gaussian parameters, as opposed to a
static UV Gaussian map; (2) the network weights provide
a shared canonical representation across different individu-
als, as opposed to person-specific rendering methods. Dur-
ing inference, we can directly use our diffusion model to
sample network weights and use the generated network to
render dynamic digital avatars with the skeletal pose as the
input. Fig. 1 provides an overview of our method. We sum-
marize our main contributions as follows:
• For the first time, we unify person-specific rendering

and diffusion-based generation to enable dynamic human
avatar generation with pose-dependent deformations.

• To this end, we encode a dynamic human avatar into a
motion-aware network and learn a hyper diffusion model
that generates the network weights representing a dy-
namic avatar.

• To train our hyper diffusion model on network weights,
we leverage a transformer-based diffusion model that ef-
fectively learns the complex structure of these weights.

2. Related work
In this work, we focus on unconditional dynamic human
avatar generation. As a result, human reconstruction meth-
ods that rely on multi-view images and the corresponding
human pose as inputs at inference time [58, 65, 71, 82, 94,
98] are out of the scope of our paper.

2.1. Personalized 3D human rendering

Recent advancements in neural rendering, such as
NeRF [48] and 3DGS [28], have made it possible to learn
human avatars directly from calibrated multi-view video in-
puts. Starting from NeRF [48], various approaches have
been proposed to reconstruct the dynamic appearance of 3D
humans [1, 17, 24, 36, 40, 81]. The key idea behind these
methods is to introduce deformable human NeRFs that de-
form the posed space to a shared pose canonical space. De-
spite producing high-quality renderings, these methods in-
herit the limitations of NeRF-based approaches, resulting
in significantly longer rendering times. To overcome this
limitation, more recent methods [23, 25, 50, 63, 94] replace
NeRF by 3DGS to enable real-time rendering speed while
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also improving photorealism. Nevertheless, the aforemen-
tioned methods primarily focus on achieving photorealistic
renderings of a single personalized human. In contrast, our
method aims at building a generative and dynamic 3D hu-
man avatar model by training on large, cross-identity, and
multi-view datasets.

2.2. 3D human generation

Recent diffusion-based image generation models have
demonstrated unprecedented progress in the context of
quality, diversity, and controllability [16, 46, 54, 61, 64].
To this end, numerous efforts [47, 56, 66, 73, 84] have been
made to leverage the rich 2D prior knowledge for 3D gener-
ation through score distillation sampling [55, 78]. Similarly,
recent 3D human generation methods [7, 26, 38, 41, 91]
also utilize the idea to optimize the underlying 3D repre-
sentation, i.e. NeRF or 3DGS, given text or image con-
ditions. Despite their compelling results, these methods
suffer from computational inefficiency, due to the involved
per-instance optimization [43]. To improve efficiency, most
recent works [10, 93] directly train a diffusion model in
the underlying 3D representation space, e.g. volumetric
primitives [42] or 3DGS UV maps from multi-view hu-
man data [77, 87]. Nevertheless, they fail to model pose-
dependent deformations by learning a static representation
and using solely simple skeleton-based articulation, i.e. lin-
ear blend skinning [11]. In contrast, our method trains a dif-
fusion model directly in the network weight space, where
the network captures pose-dependent deformations while
also achieving real-time rendering speed once the weights
have been initialized.

2.3. Diffusion models for generative 3D Gaussian
Splatting

In comparison to 2D image generation, generating 3D ob-
jects is much more difficult due to the additional dimen-
sion and the scarcity of high-quality 3D data [9, 13, 14, 89].
Among all 3D generation methods, there is a line of work
that utilizes diffusion models to generate 3DGS [49, 60,
74, 88, 90, 97]. The unstructured nature of 3DGS poses
a significant challenge in finding a shared canonical space
to train diffusion model. GSD [49] constraints the num-
ber of 3D Gaussians, while L3DG [60] embeds 3D Gaus-
sians into a dense latent grid. TriplaneGaussian [97] and
DiffGS [95] directly decode 3D Gaussian attributes from
generated Triplanes [8]. Omegas [85] trains a 2D diffusion
model to predict 2D UV maps of the geometry and materi-
als of 3D objects. To generate dynamic 3D objects, a recent
method [59] explicitly introduces the time dimension by
leveraging HexPlanes [5]. Nevertheless, none of the exist-
ing methods is capable of generating articulated 3D humans
due to their inherent complexity and large deformations. To
address this, our method introduces the diffusion process in

the network weight space, which encapsulates the informa-
tion of dynamic human avatars. The concept of diffusion
in network weight space has been explored in areas such
as shape generation [15] and transfer learning [70]. How-
ever, our approach is the first to leverage hyper diffusion for
dynamic human avatar generation.

3. Background
3.1. SMPL-X

SMPL-X [51] is a 3D parametric human model that repre-
sents the human shape (without cloth) consisting of body,
hands, and face. This model consists of 10,475 vertices and
54 joints, allowing for control over body shape, body pose,
and face expression. The deformation process can be de-
fined as

M(β, θ, ψ) = LBS(TP (β, θ, ψ), J(β), θ,W ), (1)

where β, θ and ψ represent shape, pose and expression pa-
rameters, respectively. The linear blend skinning (LBS)
function [35], denoted as LBS(·), is used to transform the
canonical template TP to the given pose θ based on the skin-
ning weight W and joint locations J(β). The canonical
template TP can be computed as

TP (β, θ, ψ) = TC +BS(β) +BP (θ) +BE(ψ), (2)

where TC is the mean shape and BS(β), BP (θ), BE(ψ)
represent per-vertex displacements calculated by the blend
shapes S, P,E with their corresponding shape, pose, ex-
pression parameters.

3.2. 3D Gaussian Splatting

3D Gaussian Splatting [28] is an explicit point-based repre-
sentation for novel view synthesis and 3D reconstruction
that models static scenes using a collection of 3D Gaus-
sian primitives. These primitives enable real-time rendering
through differentiable rasterization. Each Gaussian primi-
tive is parametrized by their center position µ ∈ R3, covari-
ance Σ ∈ R3×3, color c ∈ R3, and opacity α ∈ R. By
projecting 3D Gaussians onto the camera’s imaging plane,
the 2D Gaussians are assigned and sorted to the correspond-
ing tiles for point-based rendering [99], i.e.

c(p) =
∑
i∈N

ciσi

i−1∏
j=1

(1− σj), (3)

where σi = αi exp(− 1
2 (p − µi)

TΣ−1
i (p − µi)), and p is

the location of queried point and µi,Σi, ci, αi and σi are
the center position, covariance, color, opacity, and density
of the i-th Gaussian primitive, respectively. To model view-
dependent appearance, the color c is represented via coef-
ficients of spherical harmonics (SH) [28]. In practice, each
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Figure 2. Dynamic human representation learning based on UNet. Given a specific human pose, the pose-dependent position and
normal maps are generated via inverse texture mapping. These maps serve as inputs to the UNet, which predicts pose-dependent 3D
Gaussians for rendering. During training, the UNet is optimized using multi-view RGB image sequences along with their corresponding
segmentation masks.

Gaussian is parametrized as Gi = {pi, si, qi, αi, hi} ∈ R59,
including 3D center position pi ∈ R3, scaling si ∈ R3,
quaternion qi ∈ R4, opacity αi ∈ R, and spherical harmon-
ics hi ∈ R48.

3.3. Denoising diffusion models

Given a dataset of examples drawn independently from a
real data distribution q(x), diffusion models aim to learn
the data distribution by sequentially denoising random noise
samples [21, 67, 69]. During training, the diffusion model
defines a forward diffusion process in which a small amount
of Gaussian noise is added in T steps, producing a sequence
of noisy samples x1, ..., xT . The step sizes are controlled by
a variance schedule {βt ∈ (0, 1)}Tt=1, i.e.

q(xt|xt−1) = N(xt;
√
1− βtxt−1, βtI), (4)

q(x1:T |x0) =
T∏

t=1

q(xt|xt−1). (5)

During inference, the reverse process iteratively removes
noise from an input xT drawn from the Gaussian distribu-
tion using the learned denoiser and obtains a clean sample
x0 in the end [21, 68].

4. Our method
In this work, we present an unconditional generative model
for synthesizing dynamic human avatars trained on a large,
cross-identity, and multi-view human video dataset. Our
approach involves two stages. In the first stage, we train
a UNet [62] to map 3D skeletal human poses to the corre-
sponding pose-dependent 3DGS for each human avatar in-
dividually. In the second stage, we propose a transformer-
based [57] hyper diffusion model for generative and pho-
torealistic human modeling, which is trained on the collec-
tion of network weights obtained from the first stage. At
inference, our model can generate network weights corre-
sponding to valid dynamic human avatars by performing the
reverse diffusion process on randomly sampled noise.

4.1. Dynamic human representation

The overall pipeline of dynamic human representation
learning is depicted in Fig. 2. Inspired by recent advances
in person-specific dynamic human rendering [34, 37, 50],
we model each individual human avatar with a dedicated
lightweight UNet with network weight w, denoted as Uw.
The UNet takes pose-dependent texture as input, specifi-
cally the normal texture Nuv(θ) ∈ RT×T×3 and position
texture Puv(θ) ∈ RT×T×3, which together encode the body
pose θ in the 2D UV space. These textures are derived from
the posed template TP (see Eq.2) via inverse texture map-
ping [50]. Notably, unlike previous person-specific meth-
ods [37, 50], we utilize the mean SMPL-X template (i.e.
β = 0, ψ = 0) instead of a person-specific template mesh,
enabling a unified input motion representation across differ-
ent individuals (i.e. shared UV space and mesh template).
The UNet outputs 3D Gaussians parameterized in the same
2D UV space (i.e. Guv(θ) ∈ RT×T×59), such that each
texel of the template mesh encodes the parameters of a cor-
responding 3D Gaussian. This approach effectively binds
the Gaussians to the template, enabling accurate and flexi-
ble avatar representation. To this end, the UNet learns the
pose-dependent 3DGS, i.e.

Guv(θ) = Uw(Nuv(θ), Puv(θ)). (6)

After obtaining the Gaussians, we use LBS [35] to trans-
form the positions of Gaussians from canonical pose space
to world space:

puv = LBS((aa · v̄a + ab · v̄b + ac · v̄c) + duv), (7)

where duv ∈ RT×T×3 denotes the learned offset of Gaus-
sians, puv ∈ RT×T×3 represents the final positions of Gaus-
sians in world space, a• is the barycentric weight on each
texel and v̄• is the corresponding canonical vertex posi-
tion of the template mesh. To this end, our method mod-
els the pose-dependent deformations by learning the pose-
dependent offset of Gaussians duv.
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Figure 3. Diffusion process on network weight space. During the forward diffusion process, the standard Gaussian noise at time step t is
added to the network weights and the transformer take the noisy weights as well as the time step t to predict the denoised weights.

For each camera view k with projection matrix πk, the
resulting 3D Gaussians Guv are rendered using a differ-
entiable Gaussian rasterizer R, producing a RGB image
Ik ∈ RH×W×3 and an opacity image Ok ∈ RH×W×1, i.e.

(Ik, Ok) = R(Guv(θ), πk). (8)

To train the UNet Uw, we compute the mean absolute error
LL1 and the structural similarity LSSIM between the ren-
dered RGB image Ik and the ground-truth image Igtk , fol-
lowing prior works [28, 50]. Additionally, we compute the
AlexNet-based [31] perceptual loss [92] LLPIPS for better
visual appearance and the mean absolute error Lmask be-
tween the rendered opacity image Ok and the ground-truth
human segmentation mask Mk for better outlines of Gaus-
sian primitives [6]. The overall training loss is a weighted
sum of the individual losses, i.e.

Ltotal = λpixLL1(Ik, I
gt
k ) + λstrLSSIM(Ik, I

gt
k )+

λperLLPIPS(Ik, I
gt
k ) + λmLmask(Ok,Mk).

(9)

In this manner, each dynamic human avatar is repre-
sented by its corresponding neural network weightswi, pro-
viding a unified canonical space that accommodates varia-
tions in shape and appearance across different individuals.
Thus, the per-instance optimization leads to a collection of
network weights W = {wi}Ni=1, where N is the number of
human individuals. To constrain the network weight distri-
bution, we use a consistent weight initialization [15] instead
of random weight initialization.

4.2. Network weight space diffusion

Once we obtain the collection of network weights W , we
train a diffusion model to learn the underlying distribution
of the network weights as shown in Fig. 3. We consider the
set of weights of a given UNet wi as a sequence of convo-
lutional kernels and biases, i.e.

wi = {kli, bli}Ll=1, (10)

where kli ∈ RCl
out×Cl

in×Kl
h×Kl

w and bli ∈ RCl
out are the ker-

nel and bias of l-th convolutional layer, respectively. Dur-
ing the forward diffusion process, standard Gaussian noise

at step t is added to the network weights wi and we em-
ploy a transformer architecture T as our diffusion model,
following recent approaches [15, 53]. Specifically, for each
layer, we add Gaussian noise and flatten the kernel weights
and concatenate the corresponding biases, treating this com-
bined vector as a distinct token for the transformer input.
This process partitions the entire set of weights wi into L
separate tokens, one for each layer. The layer-wise parti-
tioning preserves the hierarchical structure of the network,
which helps the transformer to more effectively capture and
learn the complex network weight space. This is in con-
trast to previous methods [53, 70], which flatten all network
weights into a single 1D vector and chunk it into tokens,
potentially losing important structural information. Before
passing these tokens to the transformer, we project each one
into a shared feature space using a linear layer for each to-
ken, i.e.

tiin = Proji(k
i ⊕ bi), for i = {1, . . . , L}, (11)

where tiin is the projected input token and ⊕ indicates con-
catenation. As a result, tokens with the same dimension can
be directly used as input for the transformer. The resulting
noisy tokens, along with the sinusoidal embedding of t, are
then fed into the transformer T , i.e.

(t1out, t
2
out, . . . , t

L
out) = T (t1in, t

2
in, . . . , t

L
in, emb(t)). (12)

The transformer T consists of multiple self-attention and
feed-forward layers, facilitating effective information ex-
change, both within and across the tokens representing each
layers. After processing through the transformer, we unpro-
ject each token back to its original dimension using a sep-
arate linear layer for each token, mirroring the projection
performed at the input, i.e.

(ki
∗
⊕ bi

∗
) = Unproji(t

i
out), for i = {1, . . . , L}. (13)

This yields the denoised network weights w∗.
Following prior approaches [15, 21], we train the a Mean

Squared Error (MSE) loss between the denoised weights
w∗ and the input weights w. During inference we utilize
DDIM [68] to sample network weights from the diffusion
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Figure 4. Denoising network weights at various time steps. Here the network weights are visualized based on the rendering images. The
rendering images show the reverse diffusion process based on DDIM sampling. We observe that UNet weights corrupted by noise fail to
represent a valid human avatar. However, the iterative denoising process yields a high-quality human avatar.

model. Fig. 4 shows an example of the denoising process
to generate a valid UNet that represents a dynamic human
avatar.

4.3. Implementation details

Rather than using the original UNet [62], which contains
approximately 30 million learnable parameters and thus
poses significant challenges for the diffusion process, we
empirically reduce the number of hidden channels to 64, re-
sulting in a lightweight network with only 0.6 million pa-
rameters. Each avatar-specific UNet is trained using the
AdamW optimizer [29] with a batch size of 1 and a learn-
ing rate of 1 × 10−4. In terms of the training loss, we
empirically set λpix = 1.0, λstr = 0.1, λper = 0.01, and
λm = 0.1 in Eq.9. During training, the images are down-
sampled to 1024× 750 and cropped using the segmentation
mask, while the UV map resolution is set to 256 for effi-
ciency. Following prior work [50], we employ a 30k-step
warm-up and train the UNet for a total of 700k iterations.
In the context of network weight space diffusion, we uti-
lize a transformer architecture comprising 12 blocks, each
equipped with multi-head self-attention (16 heads) and a
feed-forward layer with a hidden dimension of 2048. For
training the diffusion model, network weights are standard-
ized to zero mean and unit variance. We use the AdamW
optimizer [29] with a batch size of 16 and a learning rate
of 2 × 10−4. The learning rate is reduced by 10% every
200 epochs. We train the transformer for 6000 epochs until
convergence.

5. Experimental results
5.1. Datasets and metrics

For evaluation, we utilize the multi-view human dataset
MVHumanNet [83], which contains a large number of di-
verse identities with everyday clothing. To be comparable
with baseline methods [10, 93], we manually select 500
video sequences from the first 1500 sequences based on the
SMPL-X pose parameter estimation accuracy. Evaluation

of unconditional generation of dynamic human avatar can
be challenging due to the lack of direct correspondence to
ground truth data [15]. Following prior unconditional gen-
eration methods [15, 45, 86], we evaluate the methods based
on Minimum Matching Distance (MMD), Coverage (COV),
and 1-Nearest-Neighbor Accuracy (1-NNA), i.e.

MMD(Sg, Sr) =
1

|Sr|
∑
Y ∈Sr

min
X∈Sg

D(X,Y ),

COV(Sg, Sr) =
|{argminY ∈Sr

D(X,Y ) | X ∈ Sg}|
|Sr|

,

1-NNA(Sg, Sr) =

∑
X∈Sg

1[NX ∈ Sg] +
∑

Y ∈Sr
1[NY ∈ Sr]

|Sg|+ |Sr|
,

where Sg, Sr are the set of generated data and reference data
respectively,D(X,Y ) is the distance function between data
sample X and Y , in the 1-NNA metric NX is a data sample
that is closest to X in both generated and reference dataset,
i.e.,

NX = argminK∈Sg∪Sr/XD(X,K).

Here, we use the PSNR, and the LPIPS [92] with
AlexNet features [31] (scaled by 1000) as the distance func-
tions between the rendered images from generated human
avatars and the corresponding ground-truth images. Fol-
lowing baseline methods [10, 93], we also adopt Fréchet In-
ception Distance (FID) [20] and Kernel Inception Distance
(KID) [3] to evaluate the quality of rendered images based
on the Inception-V3 model [72].

5.2. Comparison

We compare our method to other human avatar generation
methods training on multi-view human dataset: PrimDif-
fusion [10], E3Gen [93]. Notably, both methods can only
generate static human avatars, which are animated based
on simple skeleton-based articulation (i.e. LBS [11]). We
follow the same experiment settings to train them using
the 500 multi-view human video sequences from MVHu-
manNet [83]. To evaluate unconditional generation perfor-
mance, we generate 500 samples for each method. The
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Figure 5. Qualitative results on unconditional human avatar generation. Compared to baseline methods, our method is able to generate
more photorealistic human avatars.

Methods MMDPSNR ↑ MMDLPIPS ↓ COVPSNR(%) ↑ 1-NNAPSNR(%) ↓ FID ↓ KID ↓
PrimDiffusion [10] 22.23 26.45 52.3 26.8 41.97 328.46
E3Gen [93] 21.14 32.28 58.2 21.3 32.17 284.31
Ours 27.52 12.13 63.8 15.7 12.68 123.26

Table 1. Quantitative results on unconditional human avatar generation. Our method outperforms the prior state-of-the-art methods in
the context of rendering quality as well as generation diversity.

quantitative results are summarized in Tab. 1. Compared
to baseline methods, our approach generates more photo-
realistic renderings. Additionally, it outperforms existing
techniques in terms of generation diversity. Fig. 5 provides
a qualitative comparison demonstrating our method’s abil-
ity to render more photorealistic dynamic human avatars.
Moreover, our method is capable of generating dynamic hu-
man avatar with pose-dependent deformations as shown in
Fig. 6.

6. Ablation study
In this section, we examine the different choices of the dif-
fusion model. In contrast to images, which have a well-
defined grid-like structure and can leverage specialized net-
work architectures such as UNet [61, 62] or DiT [52] for
diffusion models, network weights exhibit a more complex
and less regular structure. As a result, selecting an appro-
priate representation for network weights, as well as an ef-
fective network architecture for the diffusion process, be-

comes crucial. Here we ablate different choices for network
weight representation and network architectures to identify
the most effective configuration. The experiment setting is
the same as Sec. 5. Specifically, we compare our layer-wise
partitioning to latent diffusion [61] and 1D vector flatten.
Fig. 7 illustrates the process of latent diffusion on network
weight space. Following recent work [70], the network
weights are first reshaped into a 2D feature map. This fea-
ture map is then treated as an input image and processed
using the standard latent diffusion model [61]. To this end,
the training contains two stages. In the first stage, the en-
coder and decoder are trained to reconstruct the input fea-
ture map, with a KL-penalty applied to encourage the latent
features to follow a standard normal distribution. In the sec-
ond stage, a diffusion model is trained on the latent space
representation. In the context of 1D vector flattening, the
network weights are first flattened into a single vector. This
vector is then partitioned into Nchunk equal-sized chunks,
each with dimension Cchunk. If needed, zero-padding is
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Figure 6. An example of unconditional human avatar generation of our method. Rendering sequence demonstrates our method’s
ability to generate dynamic human avatars. Pose-dependent deformations are emphasized with green rectangles.

MMDPSNR ↑ MMDLPIPS ↓ COVPSNR(%) ↑ 1-NNAPSNR(%) ↓ FID ↓ KID ↓
Latent diffusion 21.23 27.28 0.4 98.0 58.52 480.34
1D vector flatten 27.12 12.30 54.2 27.6 14.73 134.65
Ours 27.52 12.13 63.8 15.7 12.68 123.26

Table 2. Ablation study on the choice of the diffusion model. Our layer-wise partition achieves the best performance in comparison to
other choices.

Reshape

Diffusion

Reshape

Figure 7. Latent diffusion model on network weight space. The
network weights are first reshaped into a 2D feature map. An en-
coder then converts this 2D feature map into a latent space repre-
sentation. The diffusion process takes place on the latent space.
Afterward, a decoder transforms the latent features back into a 2D
feature map. Finally, the network weights are recovered by reshap-
ing the 2D feature map.

used to ensure all chunks are the same size. Each chunk is
subsequently treated as an input token for the transformer-
based diffusion model. Tab. 2 summarizes the results of our
ablation study and highlights that our layer-wise partition
achieves the best performance. We observe that latent dif-
fusion is prone to mode collapse, resulting in highly similar
or nearly identical generations across samples.

7. Limitation and future work

We introduce, for the first time, an unconditional genera-
tive model for synthesizing dynamic human avatars through
network weight space diffusion. Unlike prior approaches
that rely solely on simple skeleton-based articulation, our
method enables the generation of photorealistic human
avatars with complex, pose-dependent deformations. De-
spite these advancements, some limitations warrant further
investigation. In the first training stage, our method opti-
mizes a UNet to learn motion-aware 3D Gaussians. How-
ever, we observe that the UNet shows limited generalization
to unseen poses, underscoring the need to enhance its abil-

ity to handle novel poses. Additionally, each human avatar
is currently represented by a separate UNet, without ad-
dressing the entanglement between geometry and appear-
ance. In future work, it would be valuable to explore meth-
ods for disentangling geometry and appearance by lever-
aging relationships across different human avatars [76]. In
the context of hyper diffusion, the current method attempts
to directly learn the complex, high-dimensional distribu-
tion of the network weight space, which poses significant
challenges (e.g. neural permutation symmetry [12, 32]) for
training and limits generative performance. To address this,
it would be valuable to explore approaches such as low-
rank adaptation (e.g. LoRA [22]) or network basis learn-
ing [4, 27], which could simplify the learning process and
enhance generation capabilities.

8. Conclusion
In this work, we present the first method for dynamic hu-
man avatar generation that incorporates pose-dependent de-
formations. Our approach uniquely combines the strengths
of person-specific rendering and diffusion-based generative
modeling to achieve highly photorealistic results. Specif-
ically, we optimize a set of UNets, each corresponding to
an individual human avatar, and leverage a diffusion model
trained over the network weights to enable avatar gener-
ation. Experimental results demonstrate that our method
outperforms existing approaches by producing more pho-
torealistic avatars with accurately learned pose-dependent
deformations by evaluating on a large-scale, cross-identity,
multi-view video dataset. This contribution paves the way
for more realistic human avatar generation in a variety of
applications.
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