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Abstract. Most recent unsupervised non-rigid 3D shape matching meth-
ods are based on the functional map framework due to its efficiency and
superior performance. Nevertheless, respective methods struggle to ob-
tain spatially smooth pointwise correspondences due to the lack of proper
regularisation. In this work, inspired by the success of message passing on
graphs, we propose a synchronous diffusion process which we use as reg-
ularisation to achieve smoothness in non-rigid 3D shape matching prob-
lems. The intuition of synchronous diffusion is that diffusing the same
input function on two different shapes results in consistent outputs. Using
different challenging datasets, we demonstrate that our novel regulari-
sation can substantially improve the state-of-the-art in shape matching,
especially in the presence of topological noise.
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Fig. 1: Left: We present an unsupervised regularisation based on synchronous diffusion
for spatially smooth non-rigid 3D shape matching. This is based on the motivation that
diffusing a function f on shape M should lead to comparable results when diffusing
π(f) (i.e. f transferred to shape N using the map π) on shape N . Coloured points
are used to illustrate a (subset of) random function values. Right: Our approach can
be applied in a broad range of challenging scenarios, including topological noise, non-
isometry and partiality.

https://orcid.org/0000-0002-6505-6465
https://orcid.org/0000-0003-0599-094X
https://orcid.org/0009-0008-1137-0003


2 Dongliang Cao et al.

1 Introduction

Finding correspondences between non-rigid 3D shapes is a fundamental problem
in computer vision and computer graphics with a diverse range of applications,
including texture transfer [23], pose transfer [83,84] and statistical shape analy-
sis [26,54,58], to name just a few. Even though non-rigid 3D shape matching is
a long-standing problem and has been studied for decades [22,78], finding accu-
rate pointwise correspondence remains challenging, especially in the presence of
topological noise and partiality, which are common in real-world 3D scan data.

Inspiringly, recent deep functional map methods witnessed great improve-
ments for non-rigid 3D shape matching including near-isometric shape match-
ing [4], non-isometric shape matching [24, 53], multi-shape matching [13, 31, 85]
as well as partial shape matching [5]. Moreover, a recent deep functional map
framework [16,17] achieves state-of-the-art matching performance in diverse set-
tings. Despite the success of deep functional map methods, they map shapes in
the low-frequency spectral domain and thus often lead to locally inconsistent
pointwise correspondences. To address this limitation, many works [3,15,29,48]
attempt to additionally register shapes in the spatial domain to ensure spa-
tial smoothness of the obtained pointwise correspondences. Nevertheless, these
methods require that the given shapes are already rigidly aligned and they are
sensitive to topological noise and not directly applicable for partial shapes.

In contrast, our objective is to design a universal regularisation that en-
courages spatially smooth matching and can be easily integrated into existing
non-rigid 3D shape matching methods [4,16,85]. Prior works that ensure smooth-
ness [33, 72] typically require computationally expensive iterative optimisation
and thus cannot be integrated straightforwardly into learning frameworks. To
this end, inspired by message passing mechanisms used in the graph isomorphism
test [94] and for deep graph matching [34], we propose synchronous diffusion as
smoothness regularisation for non-rigid 3D shape matching. In contrast to mes-
sage passing mechanisms that aggregate information based on local connectivity
(e.g. one-hop neighbourhood), the diffusion process [50] utilises smooth commu-
nication [21,39], which is more robust to discretisation [81,90,100] and thus more
suitable for 3D shape analysis.

In the following we formally define synchronous diffusion:

Definition 1 (Synchronous diffusion). Let M and N be two domains (e.g. 3D
shapes) and let π be an invertible mapping from functions defined on M to N .
We say that the diffusion processes hM (diffusion on M) and hN (diffusion on
N ) are synchronous (w.r.t. π) if for any function f defined on M the following
property holds: π(hM(f)) = hN (π(f)).

Intuitively, the idea of synchronous diffusion is to apply a diffusion process to
the ‘same’ function on different domains (3D shapes in our case), see Fig. 1 left
for an illustration. Our key observation is that synchronous diffusion enforces
the mapping to be globally continuous and locally smooth. Therefore, we pro-
pose a novel regularisation based on synchronous diffusion to encourage spatially
smooth pointwise correspondences.
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Table 1: Comparison to related existing methods. Our method is the first approach
that is based on multiscale synchronous heat diffusion, tailored specifically for unsu-
pervised smooth 3D shape matching, while being more efficient than previous kernel
matching methods based on quadratic assignment formulations.

Heat diffusion Efficient Multiscale Smooth Synchronous

Heat Kernel Signature [12] " " " % %

DiffusionNet [81] " " " % %

Dirichlet Energy [33,59] % " % " %

Kernel Matching [92] " % " " %

Unsup FMNet [43] % % % " %

Heat Kernel UDFMs [7] " % " " %

Ours " " " " "

Tab. 1 compares our proposed method with the most relevant existing ap-
proaches. In contrast to prior works, our method is the first approach that is
specifically designed for unsupervised smooth 3D shape matching with a unique
combination of desirable properties. In Sec. 5 we analyse our proposed regu-
larisation and build connections with well-established heat kernel matching [92]
and the Weisfeiler-Leman graph isomorphism test [94]. In our experiments, we
demonstrate that our regularisation can be integrated into the state-of-the-art
deep functional map method [16] and substantially improve its performance. We
summarise our main contributions as follows:

– For the first time we propose a simple yet efficient regularisation for un-
supervised 3D shape matching that encourages spatially smooth pointwise
correspondences under a broad range of challenging scenarios.

– To this end, we introduce a synchronous diffusion process that penalises
local mismatches without requiring ground truth correspondences.

– We demonstrate that our regularisation substantially improves the state-of-
the-art deep functional map method in various challenging problem settings.

2 Related Work

2.1 Functional Map Methods for Non-Rigid 3D Shape Matching

Non-rigid 3D shape matching is a well-studied problem in computer vision and
graphics [87, 91]. Rather than providing an exhaustive literature survey, in the
following we will focus on reviewing the most relevant methods that are based
on the functional map framework [66]. Instead of directly finding pointwise cor-
respondences, which is often formulated as expensive combinatorial optimisa-
tion problem [9, 37, 45, 74, 95], the functional map framework finds correspon-
dences in the functional domain. Here, the correspondence relationship can
be encoded into a small matrix, namely the functional map, by using a se-
ries of truncated basis functions [66] (typically the first k Laplacian eigenfunc-
tions [52]). Due to its simplicity and efficiency, the functional map framework
has been extended in numerous follow-up works, e.g. in terms of improving the
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accuracy or robustness [32, 61, 71], as well as extending its application to par-
tial shape matching [57, 73], non-isometric shape matching [65, 70, 72], multi-
shape matching [36, 46, 47] and matching with non-unique solutions [69]. Nev-
ertheless, axiomatic functional map methods typically rely on handcrafted fea-
tures (e.g. HKS [12], WKS [6]). To further improve the matching performance,
many learning-based methods propose to learn the features directly from the
training data, either with supervision from ground-truth correspondences [25,56]
or without supervision based on isometry assumptions [43, 76]. However, deep
functional map methods often obtain local erroneous pointwise correspondences
due to the use of low-frequency basis functions and the lack of proper regular-
isation. To address this limitation, we propose an efficient regularisation based
on the diffusion process that encourages spatially smooth correspondences.

2.2 Message Passing for Graph Analysis

The message passing mechanism is an important tool for graph analysis. Despite
its simplicity (i.e. aggregate neighbouring information and update the node fea-
tures), message passing mechanisms are widely used for graph analysis. Use
cases range from traditional graph kernel analysis [75,82] for graph embedding,
to recent graph neural networks (GNNs) [97,98] for graph representation learn-
ing [40,44,64]. In the context of the graph isomorphism problem (i.e. test whether
two graphs have the same topological structure), the Weisfeiler-Leman test (WL
test) [94] is a well-known heuristic test based on message passing and has re-
cently gained popularity in the context of graph neural networks [35, 63]. The
WL test iteratively checks for node label consistency between two graphs in each
message passing step. A more comprehensive review about message passing for
graph analysis can be found in [63]. The most relevant application of message
passing to our work is deep graph matching. Recent deep graph matching meth-
ods [34,38,88,99] find node correspondences based on pairwise node feature simi-
larities. To encourage neighbourhood consensus (i.e. neighbouring nodes are still
neighbouring nodes after matching), DGMC [34] proposes a method to iteratively
improve the neighbourhood consensus in a subsequent second refinement stage
via a differentiable validator (i.e. an additional GNN) for graph isomorphism
based on the WL test heuristic. Similar to deep graph matching methods, many
recent deep functional map methods [2, 14, 16] also obtain pointwise correspon-
dences based on pairwise feature similarities. To this end, our work is inspired by
the idea of using message passing for consensus graph matching in DGMC. How-
ever, instead of using the computationally expensive second refinement stage, we
propose an efficient regularisation based on synchronous diffusion that is seam-
lessly integrated into the current deep shape matching framework [16], which
in turn significantly accelerates both training and inference, while having better
scalability to high-resolution shapes.

2.3 Diffusion for 3D Shape Analysis

The diffusion process, which originates from the analysis of heat transfer, enables
various applications in the context of 3D shape analysis, including shape segmen-
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tation [77], shape matching [66, 67], multi-resolution shape representation [52],
and geometric deep learning [81], among many other applications (see [90] for an
overview). In the context of shape matching, heat kernel matching [92] is highly
relevant to our work. In this work, a feature-based linear assignment problem
(LAP) and a kernel-based quadratic assignment problem (QAP) are solved to-
gether in an iterative way. Unlike previous work that uses geodesic distance
kernels [93], heat kernels (i.e. the solutions to the heat diffusion equations) are
chosen in this method due to their computational efficiency, their bias towards lo-
cal correspondences, and because they are more robust to topological noise [92].
The main difference between our regularisation and heat kernel matching is
that heat kernel matching measures the distances in the kernel space, while our
regularisation penalises unsmooth correspondences in the feature space, which
is more efficient [34]. Moreover, the heat kernel matching method can be con-
sidered as a special case of our synchronous diffusion regularisation as shown
in Sec. 5.

3 Background

3.1 Diffusion Process

In the continuous case, the diffusion process of a scalar field u is expressed by
the heat equation, i.e.

∂u

∂t
= ∆u, (1)

where ∆ is the Laplacian operator. The action of diffusion can be represented
via the heat operator ht, which is applied to some initial distribution u0 and
produces the diffused distribution ut at time t [81]. The solution of the diffusion
equation can be expressed as

ut = ht (u0) = exp(t∆)u0, (2)

where exp(·) is the operator exponential. For discrete domains, ∆ is replaced
by the Laplacian matrix L ∈ Rn×n. With M ∈ Rn×n being the mass matrix
such that M−1L ≈ −∆, the diffusion process can be approximated (using the
backward Euler method) [81] as

ht(u) := (M+ tL)−1Mu. (3)

However, computing the inverse of the (large) Laplacian matrix is both compu-
tationally expensive and numerically unstable [62]. In practice, spectral acceler-
ation is often used [8, 81]. Here, the diffusion process is approximated with the
first k eigenvectors Φ ∈ Rn×k and the diagonal eigenvalue matrix Λ ∈ Rk×k of
the Laplacian matrix, i.e.

ht(u) := Φ exp (−tΛ)Φ⊤u, where exp (−tΛ) =

e−λ1t

. . .
e−λkt

 . (4)
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4 Synchronous Diffusion for Smooth Matching
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Fig. 2: Illustration of our synchronous diffusion process for smooth matching. First, we
transfer the function FM from shape M to shape N and perform synchronous diffusion
on both shapes. Afterwards, the diffused function FN (t) from shape N is transferred
back to shape M. The difference between the two diffused functions is used to penalise
spatially unsmooth pointwise correspondences.

We propose a synchronous diffusion regulariser based on Definition 1 that
can be applied in any learning-based framework that outputs pointwise corre-
spondences. Typically, initial pointwise correspondences are obtained based on
local feature matching [14,16,30] without considering neighbouring information
while using regularisation in the low-frequency biased spectral domain [4,14,85].
Therefore, the pointwise correspondences inevitably contain many local mis-
matches because this relies on high-frequency alignment. To address this limi-
tation, we introduce a synchronous diffusion process that encourages spatially
smooth matchings. Specifically, consider an initial vector-valued function that is
sampled from a random distribution FM ∈ RnM×h defined on shape M. We use
the predicted soft pointwise correspondence ΠNM ∈ RnN×nM to transfer the
function FM from shape M to shape N , i.e.

FN := ΠNMFM. (5)

Afterwards, the diffusion process is applied synchronously to the initial function
defined on both shapes, i.e.

FM(t) = hM
t (FM) , FN (t) = hN

t (FN ) = hN
t (ΠNMFM) . (6)

Next, we use the predicted pointwise map ΠMN ∈ RnM×nN to transfer the
diffused function FN (t) from shape N back to shape M, i.e.

FM′(t) := ΠMNFN (t). (7)
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Finally, the difference between the function FM(t) and the function FM′(t) is
measured as a regularisation that penalises the non-smoothness of the matching,
i.e.

Ediff = ∥FM(t)− FM′(t)∥2F =
∥∥hM

t (FM)−ΠMNhN
t (ΠNMFM)

∥∥2
F
. (8)

Since diffusion exchanges information along neighbourhoods but without relying
on exact discretisation of the mesh, the term penalises correspondence that do
not preserve local neighbourhoods while indicating at which areas respective
violations occur. In practice, the initial function FM is random sampled with
unit norm along the feature dimension h, which ensures that FM is uniformly
distributed on the entire shape M (i.e. with the same amount of heat in each
vertex). Instead of manually fixing the diffusion time t [92], we randomly sample
different diffusion times for different initial functions individually, i.e.

ti ∼ Uniform(0, T ), i ∈ {1, . . . h}, (9)

where T is a pre-defined maximum diffusion time that controls the local/global
information aggregation. To this end, our regularisation can be expressed as

Ldiff =

h∑
i=1

∥∥hM
ti

(
Fi

M
)
−ΠMNhN

ti

(
ΠNMFi

M
)∥∥2

F
, (10)

where Fi
M denotes the i-th column of matrix FM. As such, we have for each time

ti a different scalar-valued initial function. In this case, our loss Ldiff enables
multiscale regularisation by using different diffusion times for each function.
The diffusion process on 3D shapes with a large diffusion time is analogous to
performing several message passing operations in the graph and vice versa.

5 Theoretical Justification

We will motivate the diffusion loss from two different perspectives: an approx-
imation of a quadratic assignment problem and a continuous version of the
Weisfeiler-Leman test.

A common formulation for non-rigid shape correspondence is as a quadratic
assignment problem of the form

argmin
ΠNM∈Pn

∥DM −Π⊤
NMDNΠNM∥ (11)

where D• might be chosen as the heat kernel [92]. In that case, the formulation
penalises the differences between heat diffusion based on initial Dirac functions
on all points. In [86] this is solved using a series of alternating diffusion steps
with the objective of promoting neighbourhood preservation. The concept of
synchronous diffusion is closely related: instead of using Dirac deltas, we sample
from a random distribution in each iteration, which can be interpreted as a
form of matrix sketching [96]. In this case we decrease the dimension from n (for
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Dirac functions in Eq. (11)) to h ≪ n. Additionally, we show experimentally that
using random functions instead of Dirac functions increases both the empirical
performance and runtime, see Section 7.

Our loss can also be understood as a continuous version of the Weisfeiler-
Leman test. In the continuous domain, manifolds do not have the same discrete
notion of neighbourhood (the meshing can only provide a noisy replacement) and
the notion of discrete labels in each node is less meaningful. However, concep-
tually, heat diffusion provides both a weighted notion of neighbourhood as well
as a message passing mechanism. In [34] the graph matching problem is solved
through synchronous message passing aggregation of permuted random features.
Our approach can be seen as replacing the neighbourhood message passing with
heat diffusion, i.e.

F
(t)
M(i) = aggregate({{F(t−1)

M (j)| j ∈ N (i)}}) becomes
⇝ F

(t)
M(i) = ht(F

(0)
M )(i). (12)

Instead of a discrete number of message-passing steps, the influence of distant
points is determined by the diffusion time parameter t, as was also proposed
in [8]; the update step becomes a simple integration. Additionally, the Weisfeiler-
Leman distance has been shown to be a lower bound for the Gromov-Wasserstein
distance [18,19] which in turn is related to solving Eq. (11).

6 Experimental Results

In this section we compare our method to previous methods on various shape
matching datasets with different settings (including near-isometric, topologically
noisy, non-isometric, and partial shape matching). To this end, we integrate our
regularisation into the state-of-the-art unsupervised functional map framework
of [16]. The details of [16] can be found in our supplementary material.

6.1 Near-isometric shape matching

Datasets. Following prior works [25,80], we evaluate our method on three stan-
dard benchmark datasets, namely the FAUST [11], SCAPE [1] and SHREC’19 [60]
datasets. To evaluate the robustness against different discretisation, we choose
the more challenging remeshed versions from [72]. The FAUST dataset contains
100 shapes, where the train/test split is 80/20. The SCAPE dataset consists of 71
shapes, where the last 20 shapes are used for evaluation. The SHREC’19 dataset
is a more challenging dataset with significant variance in the mesh connectivity
and shape geometry [60] and used only for evaluation not training.
Results. We compare our method to state-of-the-art axiomatic, supervised
and unsupervised methods. We use the mean geodesic error [49] as our eval-
uation metric. The quantitative and qualitative results are summarised in Fig. 3
and Fig. 4. Our method outperforms the previous state of the art, even in com-
parison to supervised methods. Meanwhile, our method achieves substantially
better cross-dataset generalisation compared to existing learning-based methods
(see last column in Fig. 3 left).
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Train FAUST SCAPE FAUST + SCAPE

Test FAUST SCAPE SHREC’19

Axiomatic Methods
BCICP [72] 6.1 11.0 -
ZoomOut [61] 6.1 7.5 -
Smooth Shells [28] 2.5 4.7 -
DiscreteOp [70] 5.6 13.1 -

Supervised Methods
FMNet [56] 11.0 17.0 -
3D-CODED [41] 2.5 31.0 -
GeomFMaps [25] 2.6 3.0 7.9
TransMatch [89] 1.7 12.0 10.9

Unsupervised Methods
Deep Shells [30] 1.7 2.5 21.1
DUO-FMNet [24] 2.5 2.6 6.4
AttnFMaps [53] 1.9 2.2 5.8
AttnFMaps-Fast [53] 1.9 2.1 6.3
SSCDFM [85] 1.7 2.6 3.8
URSSM [16] 1.6 1.9 4.6
Ours 1.5 1.8 3.4

Source

Fig. 3: Left: Near-isometric shape matching and cross-dataset generalisation on
FAUST, SCAPE and SHREC’19 datasets. The mean geodesic error [49] is used as quan-
titative evaluation metric. The best results in each column are highlighted. Right:
Qualitative results of our method on the challenging SHREC’19 dataset trained on
FAUST and SCAPE datasets. Our method outperforms existing state-of-the-art meth-
ods and demonstrates superior cross-dataset generalisation ability.
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URSSM: 0.85
Ours: 0.86
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SCAPE
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Fig. 4: Near-isometric shape matching and cross-dataset generalisation on FAUST,
SCAPE and SHREC’19 datasets where we evaluate the performance on the SHREC’19
dataset trained on FAUST and SCAPE datasets. Proportion of correct keypoints
(PCK) curves and corresponding area under curve (scores in the legend) of our method
in comparison to the existing unsupervised state-of-the-art methods.

6.2 Matching with topological noise

Datasets. The topology of meshes can undergo significant inconsistencies, e.g. due
to self-intersections of separate parts of real-world scanned objects. Such topolog-
ical noise presents a great challenge, both for matching methods based on func-
tional maps as it distorts the intrinsic shape geometry [51], as well as methods
solely based on spatial registrations [31]. To evaluate our method for matching
with topologically noisy shapes, we use the TOPKIDS dataset [51].
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Geo. error (×100) TOPKIDS Fully intrinsic

Axiomatic Methods
ZoomOut [61] 33.7 ✓

Smooth Shells [28] 11.8 ✗

DiscreteOp [70] 35.5 ✓

Unsupervised Methods
UnsupFMNet [43] 38.5 ✓

SURFMNet [76] 48.6 ✓

WSupFMNet [80] 47.9 ✓

Deep Shells [30] 13.7 ✗

NeuroMorph [29] 13.8 ✗

AttnFMaps [53] 23.4 ✓

AttnFMaps-Fast [53] 28.5 ✓

URSSM [16] 9.2 ✓

Ours 5.4 ✓

Source AttnFMaps

URSSM Ours

Fig. 5: Results on the TOPKIDS dataset. We distinguish fully intrinsic methods (i.e.
methods solely based on functional maps) from the methods that rely on additional
extrinsic information (e.g. rigid alignment). Our method substantially outperforms all
existing methods, even compared to methods relying on extrinsic information.

Results. We compare our method with prominent axiomatic methods and un-
supervised methods. The quantitative results are summarised in Fig. 5. Our
method substantially outperforms existing methods, even in comparison to meth-
ods relying on additional extrinsic information. Fig. 6 left shows PCK curves of
our method in comparison to existing state-of-the-art unsupervised methods and
demonstrates the superior performance of our method even under large topologi-
cal noise. The main reason is the relative robustness of the diffusion process w.r.t.
small topological noise [92] when choosing small diffusion times t and the multi-
scale regularisation based on randomly sampled diffusion time (see comparison
to fixed diffusion time in Sec. 7). By choosing a small maximum diffusion time
T in Eq. (9), we ensure our regularisation to focus more on the local neighbour-
hood and thus to be less effected by the global distortion caused from topological
noisy parts. More details about the choice of diffusion time can be found in the
supplementary materials.

6.3 Non-isometric shape matching

Datasets. In the context of non-isometric shape matching, we consider the
SMAL [102] dataset and the DT4D-H [59] dataset. The SMAL dataset contains
49 animal shapes of 8 species. Similarly to previous work [16,24], five species are
used for training and three different species are used for testing (i.e. 29/20 shapes
for the train/test split). The DT4D-H dataset based on DeformingThings4D [55]
is firstly introduced in [59]. Following prior evaluations [16, 53], nine classes of
shapes are used for evaluation, resulting in 198/95 shapes for train/test split.
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Fig. 6: Left: Shape matching with topological noise on the TOPKIDS dataset.
Our method significantly outperforms existing unsupervised methods. Right: Non-
isometric shape matching on SMAL and DT4D-H datasets. Our method demonstrates
state-of-the-art performance in both challenging scenarios.

Geo. error (×100) SMAL DT4D-H

intra-class inter-class

Axiomatic Methods
ZoomOut [61] 38.4 4.0 29.0
Smooth Shells [28] 36.1 1.1 6.3
DiscreteOp [70] 38.1 3.6 27.6

Supervised Methods
FMNet [56] 42.0 9.6 38.0
GeomFMaps [25] 8.4 2.1 4.1

Unsupervised Methods
WSupFMNet [80] 7.6 3.3 22.6
Deep Shells [30] 29.3 3.4 31.1
DUO-FMNet [24] 6.7 2.6 15.8
AttnFMaps [53] 5.4 1.7 11.6
AttnFMaps-Fast [53] 5.8 1.2 14.6
URSSM [16] 3.9 0.9 4.1
Ours 3.6 0.9 3.9

Source AttnFMaps

URSSM Ours

Fig. 7: Results on SMAL and DT4D-H datasets. Our method outperforms existing
methods for challenging non-isometric shape matching on both SMAL and DT4D-H
inter-class datasets and shows comparable performance on near-isometric shape match-
ing on the DT4D-H intra-class dataset.

Results. Fig. 7 summarises the qualitative and quantitative matching results
on the SMAL and DT4D-H datasets. In the context of non-isometric inter-class
shape matching, our approach outperforms the existing state-of-the-art methods
on both challenging datasets, even in comparison to supervised methods. Mean-
while, our method demonstrates comparable and near-perfect matching results
for intra-class matching on the DT4D-H dataset. Fig. 6 right shows the PCK
curves and the corresponding AUC of our method compared to existing state-
of-the-art methods. Compared to the results on topological noisy dataset, the
performance improvement is less significant – one of the main reasons is that
large non-isometry leads to inconsistent diffusion processes on two shapes.

6.4 Partial shape matching

Datasets. We evaluate our method on the SHREC’16 partial dataset [20]. The
dataset contains 200 training shapes and 400 test shapes, with eight different
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classes (including humans and animals). Each class has a complete template
shape to which the other partial shapes are matched. The dataset is divided into
two subsets, namely CUTS (missing a large part) with a 120/200 train/test split
and HOLES (missing many small parts) with a 80/200 train/test split.

Source DPFM DPFM-unsup URSSM Ours

Fig. 8: Qualitative comparison between our method and existing state-of-the-art meth-
ods on the SHREC’16 dataset. Our method leads to spatially smoother matchings.

Train CUTS HOLES

Test CUTS HOLES CUTS HOLES

Axiomatic Methods
PFM [73] 9.7 23.2 9.7 23.2
FSP [57] 16.1 33.7 16.1 33.7

Supervised Methods
GeomFMaps [25] 12.8 20.6 19.8 15.3
DPFM [5] 3.2 15.8 8.6 13.1

Unsupervised Methods
DPFM-unsup [5] 9.0 22.8 16.5 20.5
ConsistFMaps [13] 8.3 23.7 15.7 17.7
URSSM [16] 3.2 13.5 5.6 8.2
Ours 2.9 13.0 4.9 8.1
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Ours: 0.91
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URSSM: 0.79
Ours: 0.80

Fig. 9: Results on the SHREC’16 partial dataset. Our method substantially out-
performs state-of-the-art methods, even in comparison to the supervised approaches.
Meanwhile, our method demonstrates better cross-dataset generalisation ability.

Results. Fig. 8 and Fig. 9 provide the qualitative and quantitative results of
our method in comparison to previous axiomatic, supervised and unsupervised
methods that are suitable for partial shape matching. Similar to prior works [13,
16], we pre-train the feature extractor on complete shapes due to the limited
amount of training shapes [27] and use vertex position as input features [5].
Compared to existing methods, our approach is more robust to partiality and
enables spatially smoother pointwise correspondences.

7 Ablation Study

In this section we conduct ablative experiments to analyse the effectiveness of
our regularisation. For all ablation experiments, we choose the most challeng-
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ing TOPKIDS dataset for evaluation. We study a total of six different ablative
settings and explain these in detail in the following.
(a) Removal of our regularisation. We remove our regularisation Ldiff de-
fined in Eq. (10) for training. In this case, no spatial smoothness regularisation
is taken into consideration.
(b) Fixed single diffusion time. We replace our randomly sampled diffusion
time defined in Eq. (9) by a heuristically manually selected single diffusion time
applied to the whole distribution FM as defined in Eq. (8).
(c) Pre-defined initial distributions. In Sec. 4, we choose randomly sampled
initial distributions that we diffuse. In this ablative setting, we consider a pre-
defined initial distributions. To this end, we choose to use the first h Laplacian
eigenfunctions ΦM ∈ RnM×h, which corresponds to the smoothest orthogonal
basis w.r.t. the Dirichlet energy [10].
(d) Comparison to heat kernel matching. In Sec. 5 we conceptually relate
our regularisation to heat kernel matching [92], which we now study empirically.
To this end, we replace Ldiff defined in Eq. (10) by the quadratic assignment
formulation defined in Eq. (11). Similarly, we consider a multiscale setting, i.e.

Lkernel =

h∑
i=1

∥∥Dti
M −Π⊤

NMDti
NΠNM

∥∥2
F
, (13)

where Dti
• = Φ• exp (−tiΛ•)Φ

⊤
• is the heat kernel, and ti is the randomly sam-

pled diffusion time defined in Eq. (9). We emphasise that heat kernel match-
ing is much more computationally expensive, since the matrix size in Lkernel is
nM × nN , opposed to nM × h in our regularisation.
(e) Comparison to Dirichlet energy. Many prior works [16, 33, 59] utilise
the Dirichlet energy to prompt smooth pointwise correspondences. The Dirichlet
energy is expressed as

LD = ∥ΠNMVM∥2LN
= tr((ΠNMVM)⊤LN (ΠNMVM)), (14)

where VM is the matrix of vertex locations of shape M. However, the opti-
mal solution of LD leads to a degenerate result, i.e. all vertices of shape M are
matched to the same vertex of shape N . In contrast, our regularisation encour-
ages bijective/high-coverage correspondences.
(f) Comparison to cycle-consistency. We point out that if ti = 0 for all
distributions (i.e. no diffusion), our regularisation degrades to the commonly
used cycle-consistency loss [42,101], i.e.

Ldiff = ∥FM −ΠMN (ΠNMFM)∥2F , (15)

since h0 (u) = u in Eq. (3).
Results. We summarise the quantitative results in Tab. 2. Compared to the use
of a fixed diffusion time (see column (a)), we notice that our random diffusion
time sample strategy enables multiscale regularisation, and thus obtains better
performance. Compared to the pre-defined FM (see column (b)), we observe
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random initial distributions is better. In comparison to kernel matching (KM),
Dirichlet energy, and cycle-consistency (column (d), column (e), and column (f)),
our regularisation demonstrates better matching performance and significantly
improves the baseline (i.e. compared to column (a)).

Table 2: Qualitative results of our ablation study on TOPKIDS dataset. Compared to
different settings, our proposed regularisation obtains the best matching performance.

TOPKIDS (a) w/o Ldiff (b) Fixed t (c) Pre-defined FM (d) KM (e) Dirichlet (f) Cycle-con. Ours

Initial FM n/a Rand. ΦM Dirac n/a Rand. Rand.
Geo. error 9.2 7.8 10.7 8.9 9.5 9.8 5.4

8 Discussion and Limitations

For the first time, we propose a simple yet efficient regularisation via synchronous
diffusion for unsupervised smooth non-rigid 3D shape matching. Yet, there are
some limitations that give rise to further investigations.

One limitation of our work is its scope: although conceptually our syn-
chronous diffusion idea can be applied to other settings (including image keypoint
matching [79], graph matching [34] and point cloud matching [14]), in this work
we specifically focus on non-rigid 3D shape matching based on deep functional
maps. As such, we cannot handle partial-to-partial shape matching [5], which is
a limitation that we inherit from the functional map framework [73]. Analysing
and extending our regularisation to the challenging and highly relevant case of
partial-to-partial shape matching is an interesting direction for future work.

Another limitation of our work is that – from a theoretical point of view – the
diffusion process is inconsistent for pairs of shapes with severe non-isometries and
topological differences. Yet, experimentally we demonstrate that our regularisa-
tion works well in such settings. However, this requires a careful choice of the
maximum diffusion time T to adequately balance local and global information
exchange (see supplementary for more details).

9 Conclusion

In this work we propose the first unsupervised regularisation based on a syn-
chronous diffusion process for smooth non-rigid 3D shape matching. We demon-
strate that our simple regularisation can easily be integrated into a recent state-
of-the-art shape matching method and that this leads to a notable performance
improvement in different challenging cases, including non-isometric, topologically
noisy and partial shapes. Our work is the first attempt to design a diffusion-based
smoothness regularisation for unsupervised learning of matching problems and
we hope that it will inspire follow-up works across different domains and variants
of matching problems.
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