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Figure 1. Qualitative 3D shape matching results of our method. The leftmost reference shape is matched to the other shapes in the first

row. The second row visualises the corresponding functional maps. We observe that the diagonal structure of the functional maps changes

significantly, especially under non-isometry or partiality. To better account for the varying structure of the functional map, we propose a

self-adaptive functional map solver that can adjust the functional map regularisation strength and structure depending on the input shapes.

Abstract

We propose a novel unsupervised learning approach for
non-rigid 3D shape matching. Our approach improves upon
recent state-of-the art deep functional map methods and can
be applied to a broad range of different challenging scenar-
ios. Previous deep functional map methods mainly focus on
feature extraction and aim exclusively at obtaining more ex-
pressive features for functional map computation. However,
the importance of the functional map computation itself is
often neglected and the relationship between the functional
map and point-wise map is underexplored. In this paper,
we systematically investigate the coupling relationship be-
tween the functional map from the functional map solver
and the point-wise map based on feature similarity. To this
end, we propose a self-adaptive functional map solver to
adjust the functional map regularisation for different shape
matching scenarios, together with a vertex-wise contrastive
loss to obtain more discriminative features. Using different
challenging datasets (including non-isometry, topological
noise and partiality), we demonstrate that our method sub-
stantially outperforms previous state-of-the-art methods.

1. Introduction
3D shape matching is a fundamental problem in shape anal-

ysis, computer vision and computer graphics with a broad

range of applications, including texture transfer [15], defor-

mation transfer [63] and statistical shape analysis [20, 39,

43]. Even though 3D shape matching is a long-standing

problem and has been studied for decades [64, 66], find-

ing correspondences between two non-rigidly deformed 3D

shapes is still a challenging problem, especially for shapes

with large non-isometric deformation, topological noise, or

partiality.

Notably, in the case of 3D shapes represented by triangle

meshes, the functional map framework [49] is one of the

most dominant pipelines in this area and has been extended

by many follow-up works due to its efficiency and well-

justified theoretical properties [17, 48, 52, 56].

Meanwhile, with the recent rapid development in deep

learning, many learning-based methods for non-rigid 3D

shape matching are also based on the functional map frame-

work, including both supervised [4, 16, 41] and unsuper-

vised [10, 12, 18, 23, 30, 38, 58, 61] approaches. Most of

them mainly focus on training the feature extraction mod-

ule to obtain functional maps based on the extracted fea-

tures and then rely on off-the-shelf post-processing [46] to
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obtain final point-wise correspondences. In contrast, the

recent work by Cao et al. [12] explicitly models the rela-

tionship between functional maps and pointwise maps and

thus leads to more robust matching in a broad range of chal-

lenging scenarios. However, the method only focuses on

extracting more expressive features and ignores the impor-

tance of the functional map computation itself. Further, it

lacks a discussion about insights between the relationship

between the functional map and point-wise map.

In this paper, we improve upon the recent work by Cao

et al. [12] by proposing a novel functional map solver that is

self-adaptive to different shape matching scenarios. More-

over, we systematically analyse the relationship between

the functional map and the point-wise map and introduce

a vertex-wise contrastive loss to obtain more discrimina-

tive features leading to more accurate correspondences. We

summarise our main contributions as follows:

• For the first time we propose a functional map solver that

is self-adaptive for different challenging matching scenar-

ios.

• We introduce a vertex-wise contrastive loss to obtain

more discriminative features that can be used directly for

matching via nearest neighbour search.

• We set the new state-of-the-art performance on numer-

ous challenging benchmarks in diverse settings, includ-

ing non-isometric, topologically noisy and partial shape

matching, even compared to recent supervised methods.

2. Related work

3D shape matching is a long-standing problem that has been

studied for decades. In the following we focus on reviewing

those methods that are most relevant to our work. A more

comprehensive overview can be found in [59, 64, 66].

2.1. Axiomatic shape matching methods

Shape matching can be formulated as establishing point-

wise correspondences between a given pair of shapes. A

simple formulation for doing so is the linear assignment

problem (LAP) [47]. However, the LAP cannot take geo-

metric relations into account and thus leads to spatially non-

smooth matchings. To compensate for this, several shape

matching approaches [31, 57, 68] establish correspondences

by explicitly incorporating geometric constraints. Some

methods [6, 21, 26, 33] attempt to solve the problem based

on non-rigid shape registration. Overall, directly establish-

ing point-wise correspondences often leads to complex op-

timisation problems that are difficult to solve.

In contrast, the functional map framework finds corre-

spondences in the functional domain [49]. Here, the cor-

respondence relationship can be encoded with a small ma-

trix, namely the functional map. Due to its simple yet effi-

cient formulation, the functional map framework has been

extended by many follow-up works, e.g. in terms of improv-

ing the matching accuracy and robustness [25, 53], extend-

ing it to more challenging scenarios (e.g. non-isometry [22,

36, 44, 52, 55], partiality [42, 56]), considering multi-

shape matching [13, 28, 32, 34], and matching with non-

unique solutions [54]. Nevertheless, axiomatic functional

map methods rely on handcrafted features (e.g. HKS [9],

WKS [5], SHOT [60]), which limits their performance. In

contrast, our method (among others) directly learns discrim-

inative features from training data and achieves more accu-

rate and robust matching performance on challenging set-

tings.

2.2. Deep functional map methods

In contrast to axiomatic approaches, deep functional map

methods aim to learn features directly from training data.

The supervised FMNet [41] is the pioneer work that learns a

non-linear transformation of SHOT feature [60] based on a

point-wise MLP. Later works [30, 58] enable unsupervised

training of FMNet by introducing isometry regularisation

in the spatial and spectral domain, respectively. Instead of

using simple point-wise MLPs, follow-up works [16, 61]

replace FMNet by point-based networks [51, 65] and lead

to better matching performance. More recently, Sharp et al.

[62] introduces DiffusionNet with a learnable diffusion pro-

cess and has set the new state-of-the-art matching perfor-

mance for a broad range of shape matching scenarios, in-

cluding near-isometry [3, 10], non-isometry [2, 18, 38],

partiality [4, 12], as well as shapes represented as point

clouds [11]. Despite the rapid progress of deep functional

map methods, existing approaches mostly focus on learn-

ing more expressive features for functional map computa-

tion, while ignoring the importance of the functional map

computation itself. In this work, we systematically investi-

gate the functional map computation process and introduce

a self-adaptive functional map solver to better regularise the

functional map structure for different kinds of input shapes.

3. Background

In this section we explain the background and introduce the

notation used throughout the rest of the paper in Tab. 1.

3.1. Functional map framework

We consider a pair of 3D shapes X and Y represented as tri-

angle meshes, with nX and nY vertices, respectively. Here

we summarise the common pipeline of the functional map

framework.

1. Compute the associated positive semi-definite Laplacian

matrices LX , LY [50]. The Laplacian matrix can be

computed as LX = M−1
X WX , where MX is the diago-

nal lumped mass matrix and WX is the cotangent weight

matrix.
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Symbol Description
X ,Y 3D shapes with nX , nY vertices

LX R
nX×nX Laplacian matrix of shape X

ΛX R
k×k eigenvalue matrix of Laplacian LX

ΦX R
nX×k LBO eigenfunctions of shape X

Φ†
X R

k×nX Moore-Penrose inverse of ΦX
FX R

nX×c vertex-wise features of shape X
AX Φ†

XFX projected feature coefficients of shape X
CXY R

k×k functional map between shapes X and Y
ΠYX point-wise map between shapes Y and X

Table 1. Summary of the notation used in this paper.

2. Compute the first k eigenfunctions ΦX ,ΦY and the cor-

responding eigenvalues ΛX ,ΛY of the respective Lapla-

cian matrices (i.e. LBO eigenfunctions/eigenvalues).

3. Compute c-dimensional features FX , FY defined on

each shape either from handcrafted feature descriptors

or from a learnable feature extractor.

4. Compute the functional map CXY associated with the

LBO eigenfunctions by solving (variants of) the least

squares problem

CXY = argminC Edata (C) + λEreg (C) . (1)

Here, minimising Edata = ‖CAX −AY‖2F enforces de-

scriptor preservation, while minimising the regularisa-

tion term Ereg imposes some form of structural proper-

ties (e.g. Laplacian commutativity [49]).

5. Recover the point-wise map ΠYX based on the relation-

ship CXY = Φ†
YΠYXΦX , e.g. either by nearest neigh-

bour search in the spectral domain or by other post-

processing techniques [27, 46, 67].

We emphasise that most deep functional methods mainly

focus on the third step that aims to extract more expressive

features for functional map computation while ignoring the

importance of the other steps (i.e. the functional map com-

putation and point-wise map conversion). However, we ar-

gue that this may lead to sub-optimal performance, since

the three interrelated aspects feature learning, functional

map computation, and point-wise map conversion are con-

sidered in an isolated rather than a joint manner. There-

fore, in this paper we systematically investigate the func-

tional map computation step and the relationship between

the functional map and the associated point-wise map.

3.2. Deep functional maps

Instead of relying on handcrafted features [5, 9, 60] to com-

pute functional maps, many deep functional map meth-

ods [58, 61] have been proposed. The common pipeline

of those methods is shown in Fig. 2 (left).

The common deep functional map framework mainly

consists of two modules: a feature extractor and a func-

tional map solver. The feature extractor is used to extract

vertex-wise features and the functional map solver is used

to compute functional maps based on the extracted features.

To train the feature extractor, structural regularisation (e.g.

orthogonality, bijectivity [58]) is imposed on the computed

functional maps, i.e.

Lfmap = λbijLbij + λorthLorth, (2)

where

Lbij = ‖CXYCYX − I‖2F + ‖CYXCXY − I‖2F , (3)

Lorth =
∥∥C�

XYCYX − I
∥∥2
F
+
∥∥C�

XYCYX − I
∥∥2
F
. (4)

After training, off-the-shelf post-processing techniques [46,

67] are used to convert functional maps to point-wise maps.

As pointed out by recent works [3, 12, 55], a major

downside of this common pipeline is that the relation be-

tween the functional maps and associated point-wise maps

is ignored, so that the performance is often sub-optimal, es-

pecially in the presence of large non-isometry, topological

noise or partiality. To compensate for this, Cao et al. [12]

proposed to directly obtain point-wise maps based on the

extracted features and introduced a coupling loss Lcouple

to explicitly regularise the relation between the point-wise

map ΠYX and the corresponding functional map CXY , i.e.

Lcouple =
∥∥CXY − CΠ

XY
∥∥2
F
, (5)

where CΠ
XY = Φ†

YΠYXΦX .

By explicitly modelling the relationship between func-

tional maps and point-wise maps, the method proposed

by Cao et al. [12] substantially outperforms existing meth-

ods and is robust in different challenging scenarios. How-

ever, there are two major limitations:

• In their approach, one functional map CXY is computed

from the functional map solver, while the other one CΠ
XY

is converted from the point-wise map based on the feature

similarity. Yet, the underlying relationship between them

is not well-understood.

• The coupling loss Lcouple regularises the functional maps

computed from the functional map solver based on the

extracted features, while the functional map computation

itself is not optimised in a data-driven manner.

In the following, we theoretically analyse the relationship

between CXY and CΠ
XY , and revisit the map relations by

introducing a self-adaptive functional map solver and a

vertex-wise contrastive loss.

4. Theoretical analysis of map relations
In this section, we analyse the underlying relation be-

tween the functional map computed from the functional

map solver and the functional map converted by the point-

wise map based on the deep feature similarity.
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Figure 2. Left: Common pipeline of deep functional map methods. A Siamese feature extractor computes vertex-wise features for each

shape. The extracted features are used for functional map computation. During training, structural regularisation Lfmap is imposed on the

functional maps. During inference, the computed functional maps are typically converted to point-wise maps via map conversion.

Right: Our proposed shape matching pipeline. Point-wise correspondences are obtained based on feature similarity. A coupling loss

Lcouple regularises the relation between the point-wise map ΠYX and the functional map CXY [12]. To better balance the functional map

regularisation and the coupling relationship between the functional map and the point-wise map, we introduce a self-adaptive functional

map solver (with learnable parameters λ and γ) to adjust the regularisation strength and structure, respectively. Additionally, a vertex-wise

contrastive loss Lcontrast is introduced to improve the discriminative power of the features.

W.l.o.g. we assume that nY ≤ nX . With that, a (partial

or full) shape Y is matched to a full shape X and thereby

the point-wise map ΠYX should be a (partial) permutation

matrix, i.e.

P :=
{
Π ∈ {0, 1}nY×nX : Π1nX = 1nY ,1

�
nYΠ ≤ 1�

nX

}
,

(6)

where ΠYX (i, j) indicates whether the i-th point in Y cor-

responds to the j-th point in X .

Firstly, we analyse the point-wise map computed based

on the feature similarity. We note that

ΠYX = argminΠ∈P ‖ΠFX − FY‖2F . (7)

Lemma 4.1. If there exists a unique solution to Eq. (7), then
the rows of FX and FY have non-repeated rows.

Proof. If FX has repeated rows, we can find a (full) per-

mutation matrix ΠXX �= I that satisfies ΠXXFX = FX .

Therefore, any solution ΠYX has an equivalent solution

Π′
YX := ΠYXΠXX and is thus not unique. Due to the or-

thogonal invariance of the Frobenius norm, an analogous

statement can be made for FY .

Discussion. To obtain a valid point-wise map based on

the feature similarity, the features FX , FY should have non-

repeated rows. To this end, based on Lemma 4.1 we propose

a vertex-wise contrastive loss to encourage more discrimi-

native features.

Theorem 4.2. Consider the following conditions:
(i) ΠYXFX = FY ,ΠYX ∈ P , where nY ≤ nX .

(ii) FX is in the span of ΦX and FY is in the span of ΦY .
(iii) λ = 0 in Eq. (1) and AX ∈ R

k×c (k ≤ c) is full rank.
If conditions (i)-(iii) hold, then we have CXY = CΠ

XY , and
‖CXYAX −AY‖2F = 0.

Proof. By condition (i), we have ΠYXFX = FY and from

condition (ii) we know that FX = ΦXAX (since AX is the

matrix of projected feature coefficients). The same holds

for Y . Putting these together,

ΠYXΦXAX = ΦYAY . (8)

Pre-multiplying Eq. (8) by Φ†
Y we obtain

Φ†
YΠYXΦXAX = CΠ

XYAX = AY , (9)

where the definition CΠ
XY = Φ†

YΠYXΦX is used. Thus∥∥CΠ
XYAX −AY

∥∥2
F

= 0 and CXY = CΠ
XY (CXY =

argminC ‖CAX −AY‖2F achieves 0, and AX is full rank

so that the solution is unique, implying CXY = CΠ
XY ).

Discussion. Theorem 4.2 builds a connection between the

functional map CXY computed from the functional map

solver, i.e. Eq. (1), and the functional map CΠ
XY converted

from the point-wise map ΠYX . It explicitly shows that CXY
and CΠ

XY are equal under certain conditions. However, in

practical situations, the assumptions are too restrictive and

often not satisfied. For example, when computing func-

tional maps using Eq. (1), structural regularisation Ereg is

typically needed to preserve the structure of the functional

map (e.g. Laplacian commutativity for isometry). Further-

more, we often do not want to constrain the feature FX to

lie in the span of the corresponding LBO eigenfunctions

ΦX , which limits its discriminative power and expressive-

ness, since the first k LBO eigenfunctions correspond to the

k smoothest orthonormal functions defined on the surface

w.r.t. the Dirichlet energy [7]. Even though the conditions

of the theoretical results are not strictly met, the results

give insights about the relations between variables, which

1374



we transfer into soft constraints that approximate the condi-

tions. For instance, we note that the functional map solver

plays a crucial role to balance the functional map regulari-

sation and the coupling relation between the functional map

and the point-wise map. On the one hand, the regularisa-

tion term Ereg in Eq. (1) preserves the functional map struc-

ture. On the other hand, it may result an invalid functional

map (i.e. a functional map without an associated point-wise

map). Therefore, it is important to adjust the functional map

regularisation in a data-driven manner.

5. Revisiting the map relations
In the previous section, we theoretically analyse the rela-

tionship between the functional map computed from the

functional map solver and the functional map converted

from the point-wise map based on deep feature similarity.

Motivated by our analysis, we propose two simple yet ef-

ficient extensions from the existing framework, which we

introduce in the following. We highlight the different parts

in Fig. 2 (right) with red colour, compared to the common

deep functional map pipeline shown in Fig. 2 (left).

5.1. Self-adaptive functional map solver

As discussed in Theorem 4.2., we only consider Edata and

ignore Ereg in Eq. (1) with some additional assumptions

(i.e. FX , FY in the span of ΦX ,ΦY , and AX is full rank).

With that, the functional map computed by the functional

map solver CXY is equal to the functional map CΠ
XY con-

verted by the point-wise map. However, as shown in Fig. 1,

the valid functional maps often exhibit certain structures

that needs to be imposed by the regularisation term Ereg. To

this end, we propose a self-adaptive functional map solver

that can optimise the regularisation strength and the regu-

larisation structure based on the training data. Specifically,

we use the regularisation term proposed by Ren et al. [53],

which is an extension of the standard Laplacian commuta-

tivity. The standard Laplacian commutativity can be formu-

lated as

Elap = ‖CXYΛX − ΛYCXY‖2F
=

∑
ij

(ΛY(i, i)− ΛX (j, j))2 [CXY ]
2
ij

=
∑
ij

[Mlap]ij [CXY ]
2
ij .

(10)

Ren et al. [53] extended the standard mask Mlap to a resol-

vent mask Mγ
res in the form

[Mγ
res]ij = [Mγ

re]ij + [Mγ
im]ij , (11)

where

[Mγ
re]ij =

(
Λγ
Y(i, i)

Λ2γ
Y (i, i) + 1

− Λγ
X (j, j)

Λ2γ
X (j, j) + 1

)2

, (12)

[Mγ
im]ij =

(
1

Λ2γ
Y (i, i) + 1

− 1

Λ2γ
X (j, j) + 1

)2

. (13)

The parameter γ in the resolvent mask controls the regular-

isation structure of the functional map as shown in Fig. 3.

In general, the γ is chosen in the range (0, 1] to keep the

funnel-structure regularisation to be similar to the ground-

truth functional map, i.e. more diagonal-dominant entries

for smaller eigenvalues. Additionally, a larger γ imposes

larger penalisation on the non-zero off-diagonal entries

and a smaller γ provides more flexibility of the functional

map (see Fig. 3).

Figure 3. The resolvent mask Mγ
res for different γ. The red re-

gion indicates large penalty, while the blue region indicates small

penalty. We notice the funnel-like structure changes w.r.t. the

change of γ and it reverses the direction for γ > 1.

Instead of manually choosing the regularisation strength

(i.e. λ in Eq. (1)) and structure (i.e. γ in Eq. (12), Eq. (13)),

we propose to learn these parameters during training. To

this end, the functional map solver is optimised from the

input shapes to find a better balance between the data term

Edata and regularisation term Ereg and thus to better cou-

ple CXY and CΠ
XY . In the experiment, we show the sim-

ple modification leads to better matching performance espe-

cially for the most challenging scenarios. We also visualise

the regularisation for each evaluated datasets in Fig. 9.

5.2. Vertex-wise contrastive loss

As discussed in Theorem 4.1, a valid point-wise map based

on the feature similarity requires FX , FY both have distinct

rows. To this end, we propose a vertex-wise contrastive loss

to encourage more discriminative features. We first com-

pute a point-wise map ΠXX that maps shape X to itself. To

make the computation differentiable, we use the softmax

operator to approximate a soft point-wise map, i.e.

ΠXX = Softmax
(
FXFT

X /τ
)
, (14)

where parameter τ is to determine the softness of the point-

wise map. Similar to [12], the computed point-wise map

ΠXX is projected to the associated functional map CXX ,

i.e.

CXX = Φ†
XΠXXΦX . (15)
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Our vertex-wise contrastive loss regularises the functional

map CXX to be an identity matrix, i.e.

Lcontrast = ‖CXX − I‖2F . (16)

Similarly, we also apply the vertex-wise contrastive loss

Lcontrast for the functional map CYY . There are two main

advantages of applying the regularisation on the functional

map domain. The first advantage is to make Lcontrast com-

parable to other loss terms (i.e. Eq. (2) and Eq. (5)). The

second advantage is to make the Lcontrast discretisation-

agnostic. Overall, the total unsupervised loss can be ex-

pressed as

Ltotal = Lfmap+λcoupleLcouple+λcontrastLcontrast. (17)

6. Experimental results
In this section we compare our method to previous methods

on diverse benchmark shape matching datasets with differ-

ent settings (including near-isometric, non-isometric, topo-

logical noisy, and partial shape matching).

6.1. Near-isometric shape matching

Datasets. We evaluate our method on three standard

benchmark datasets, namely the FAUST [8], SCAPE [1]

and SHREC’19 [45] datasets. Following prior works, we

choose the more challenging remeshed versions from [16,

52]. The FAUST dataset consists of 100 shapes, where the

train/test split is 80/20. The SCAPE dataset contains 71

shapes, where the last 20 shapes are used for evaluation.

The SHREC’19 dataset is a more challenging dataset with

significant variance in the mesh connectivity and shape ge-

ometry. It has a total of 430 pairs for evaluation.

Results. The mean geodesic error [35] is used as quanti-

tative measure. We compare our method with state-of-the-

art axiomatic, supervised and unsupervised methods. The

results are summarised in Tab. 2. Our method outperforms

the previous state of the art, even in comparison to the super-

vised methods. Meanwhile, our method achieves substan-

tially better cross-dataset generalisation ability compared to

existing learning-based methods.

6.2. Non-isometric shape matching

Datasets. In the context of non-isometric shape matching,

we consider the SMAL [69] dataset and the DT4D-H [44]

dataset. The SMAL dataset contains 49 animal shapes of

eight species. Following Donati et al. [18], five species are

used for training and three different species are used for

testing (i.e. 29/20 shapes for train/test split). The DT4D-

H dataset based on DeformingThings4D [40] is introduced

by Magnet et al. [44]. Following Li et al. [38], nine classes

of humanoid shapes are used for evaluation, resulting in

198/95 shapes for train/test split.

Train FAUST SCAPE FAUST + SCAPE

Test FAUST SCAPE SHREC’19

Axiomatic Methods

BCICP [52] 6.1 11.0 -

ZoomOut [46] 6.1 7.5 -

Smooth Shells [22] 2.5 4.7 -

DiscreteOp [55] 5.6 13.1 -

Supervised Methods

FMNet [41] 11.0 17.0 -

3D-CODED [29] 2.5 31.0 -

GeomFMaps [16] 2.6 3.0 7.9

Unsupervised Methods

WSupFMNet [61] 3.8 4.4 -

Deep Shells [23] 1.7 2.5 21.1

DUO-FMNet [18] 2.5 2.6 6.4

AttentiveFMaps [38] 1.9 2.2 5.8

AttentiveFMaps-Fast [38] 1.9 2.1 6.3

URSSM [12] 1.6 1.9 4.6

Ours 1.5 1.8 3.4

Table 2. Near-isometric shape matching and cross-dataset gen-
eralisation on FAUST, SCAPE and SHREC’19. The best results

in each column are highlighted. Our method outperforms previ-

ous axiomatic, supervised and unsupervised methods and demon-

strates better cross-dataset generalisation ability.

Geo. error (×100) SMAL DT4D-H

intra-class inter-class

Axiomatic Methods

ZoomOut [46] 38.4 4.0 29.0

Smooth Shells [22] 36.1 1.1 6.3

DiscreteOp [55] 38.1 3.6 27.6

Supervised Methods

FMNet [41] 42.0 9.6 38.0

GeomFMaps [16] 8.4 2.1 4.1

Unsupervised Methods

WSupFMNet [61] 7.6 3.3 22.6

Deep Shells [23] 29.3 3.4 31.1

DUO-FMNet [18] 6.7 2.6 15.8

AttentiveFMaps [38] 5.4 1.7 11.6

AttentiveFMaps-Fast [38] 5.8 1.2 14.6

URSSM [12] 3.9 0.9 4.1

Ours 3.6 1.0 4.0

Table 3. Non-isometric matching on SMAL and DT4D-H. Our

method outperforms all existing methods for challenging non-

isometric inter-class shape matching on both SMAL and DT4D-H

datasets and shows comparable performance on intra-class shape

matching on DT4D-H dataset.

Results. Tab. 3 summarises the matching results on the

SMAL and DT4D-H datasets. In the context of inter-

class shape matching, our approach outperforms the ex-
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Figure 4. Non-isometric matching on SMAL and DT4D-
H inter-class datasets. Proportion of correct keypoints (PCK)

curves and corresponding area under curve (AUC) of our method

compared to the existing state-of-the-art methods.

isting state of the art on both challenging non-isometric

datasets, even in comparison to supervised methods. Mean-

while, our method demonstrates comparable and near-

perfect matching results for intra-class matching on the

DT4D-H dataset. Fig. 4 shows the PCK curves and the cor-

responding AUC of our method compared to existing state-

of-the-art methods. Fig. 5 demonstrates the qualitative re-

sults of our method applied on the challenging SHREC’20

dataset [19].

Figure 5. Qualitative results on the challenging SHREC’20
dataset of our method. Our method is capable of finding reli-

able correspondences even for shapes with extremely large non-

isometric deformations.

6.3. Matching with topological noise

Datasets. The mesh topology is often degraded due to self-

intersections of separate parts of real-world scanned ob-

jects. Such topological noise presents a large challenge to

matching methods based on the functional map framework

as it distorts the intrinsic shape geometry [37]. To evaluate

our method for matching with topologically noisy shapes,

we use the TOPKIDS dataset [37]. Due to the small amount

of data (26 shapes), we consider only axiomatic and unsu-

pervised methods for comparison.

Results. We compare our method with state-of-the-art ax-

iomatic methods and unsupervised methods. The quantita-

tive results are summarised in Tab. 4. Our method outper-

forms the existing methods substantially, even in compari-

son to methods relying on additional extrinsic alignment in-

formation. We show the PCK curves of our method in Fig. 6

(left) and qualitative results in Fig. 7.

Geo. error (×100) TOPKIDS Fully intrinsic

Axiomatic Methods

ZoomOut [46] 33.7 �

Smooth Shells [22] 11.8 �

DiscreteOp [55] 35.5 �

Unsupervised Methods

WSupFMNet [61] 47.9 �

Deep Shells [23] 13.7 �

NeuroMorph [24] 13.8 �

AttentiveFMaps [38] 23.4 �

AttentiveFMaps-Fast [38] 28.5 �

URSSM [12] 9.2 �

Ours 6.6 �

Table 4. Quantitative results on the TOPKIDS dataset. We dis-

tinguish fully intrinsic methods (i.e. methods based on the func-

tional map framework) from the methods that rely on additional

extrinsic information (e.g. a weak alignment). Our method out-

performs all existing methods substantially, even in comparison to

methods relying on additional extrinsic information.
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Figure 6. Matching with topological noise on TOPKIDS and
partial shape matching on SHREC’16. Our method improves

the state of the art over existing approaches.

DiscretOp AttentiveFMaps URSSM Ours

Figure 7. Qualitative results on TOPKIDS dataset. Compared

to existing fully intrinsic approaches, our method is more robust to

topological noise.

6.4. Partial shape matching

Datasets. We evaluate our method on the SHREC’16 par-

tial dataset [14]. The dataset contains 200 training shapes

and 400 test shapes, with 8 different classes (humans and
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animals). Each class has a complete shape to be matched

by the other partial shapes. The dataset is divided into two

subsets, namely CUTS (missing a large part) with 120/200

train/test split, and HOLES (missing many small parts) with

80/200 train/test split.

Train CUTS HOLES

Test CUTS HOLES CUTS HOLES

Axiomatic Methods

PFM [56] 9.7 23.2 9.7 23.2

FSP [42] 16.1 33.7 16.1 33.7

Supervised Methods

GeomFMaps [16] 12.8 20.6 19.8 15.3

DPFM [4] 3.2 15.8 8.6 13.1

Unsupervised Methods

DPFM-unsup [4] 9.0 22.8 16.5 20.5

ConsistFMaps [10] 8.4 23.7 15.7 17.9

URSSM [12] 3.3 13.7 5.2 9.1

Ours 2.3 15.2 5.1 6.9

Table 5. Partial shape matching on SHREC’16 dataset. Our

method substantially outperforms state-of-the-art methods and

shows comparable cross-dataset generalisation ability, even in

comparison to the supervised approached.

DPFM DPFM-unsup URSSM Ours

Figure 8. Qualitative results on SHREC’16 dataset. Compared

to existing methods, our method is more robust to partiality.

Results. We summarise the quantitative results on the

SHREC’16 datasets in Tab. 5 and the corresponding PCK

curve in Fig. 6 (right). Compared to existing methods, our

approach is more robust to partiality. We qualitatively com-

pare our method to existing approaches in Fig. 8.

6.5. Analysis of self-adaptive functional map solver

We summarise the learned parameters of the functional map

solver for different kinds of datasets to better understand

the learned regularisation strength and structure. Fig. 9 vi-

sualises the different regularisation strength (i.e. λ) and dif-

ferent regularisation structure (i.e. γ) for different datasets.

We obverse that the regularisation strength (i.e. λ)

for near-isometric shape matching (FAUST, SCAPE) is

FAUST SCAPE FAUST+SCAPE TOPKIDSE TOPKIDS

SMAL DT4D-H CUTSSMAL DT4D-H HOLESCUTS HOLES

Figure 9. Different regularisation strength and structure for
different datasets. The self-adaptive functional map solver en-

ables to adjust the regularisation based on the training data.

stronger than the strength for non-isometric shape matching

(SMAL, DT4D-H), since in theory functional maps for iso-

metric shape matching are diagonal matrices. In the context

of regularisation structure, the funnel-like structure is nar-

rower for topological noisy (TOPKIDS) and partial shapes

(CUTS, HOLES).

7. Limitation and future work

We build upon the existing state-of-the-art method [12] by

introducing the self-adaptive functional map solver and the

vertex-wise contrastive loss, and thereby achieve the new

state of the art on a wide range of benchmark datasets. Yet,

there are also some limitations that give rise to interesting

future researches. Our unsupervised method is applicable in

various settings. However, it can not be used for partial-to-

partial shape matching. Therefore, it is interesting to inves-

tigate how to extend the current framework for partial-to-

partial shape matching. For functional map computation,

we optimise the two parameters (i.e. γ, λ) that control the

regularisation strength and structure. Meanwhile, the num-

ber of LBO eigenfunctions is also an important parameter

for functional map computation. How to automatically se-

lect the best number of LBO eigenfunctions is thereby an

another interesting future work direction.

8. Conclusion

We theoretically analyse the relationship between the
functional map from the functional map solver and the
functional map from the point-wise map. Based on our
theoretical analysis, we extend the current state-of-the-art
methods. We evaluate our proposed method on diverse
shape matching benchmark datasets with different settings
and demonstrate the new state-of-the-art performance.
We believe a more accurate and robust non-rigid 3D
shape matching method would be beneficial for the shape
analysis community to better explore the shape relationship.
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Daniel Cremers. Deep shells: Unsupervised shape corre-

spondence with optimal transport. NIPS, 2020. 1, 6, 7

[24] Marvin Eisenberger, David Novotny, Gael Kerchenbaum,

Patrick Labatut, Natalia Neverova, Daniel Cremers, and An-

drea Vedaldi. Neuromorph: Unsupervised shape interpola-

tion and correspondence in one go. In CVPR, 2021. 7

[25] Davide Eynard, Emanuele Rodola, Klaus Glashoff, and

Michael M Bronstein. Coupled functional maps. In 2016
Fourth International Conference on 3D Vision (3DV), 2016.

2

[26] Danielle Ezuz, Behrend Heeren, Omri Azencot, Martin

Rumpf, and Mirela Ben-Chen. Elastic correspondence be-

tween triangle meshes. In Computer Graphics Forum, pages

121–134. Wiley Online Library, 2019. 2

[27] Danielle Ezuz, Justin Solomon, and Mirela Ben-Chen. Re-

versible harmonic maps between discrete surfaces. ACM
Transactions on Graphics (ToG), 38(2):1–12, 2019. 3

[28] Maolin Gao, Zorah Lahner, Johan Thunberg, Daniel Cre-

mers, and Florian Bernard. Isometric multi-shape matching.

In CVPR, 2021. 2

[29] Thibault Groueix, Matthew Fisher, Vladimir G Kim,

Bryan C Russell, and Mathieu Aubry. 3d-coded: 3d cor-

respondences by deep deformation. In ECCV, 2018. 6

[30] Oshri Halimi, Or Litany, Emanuele Rodola, Alex M Bron-

stein, and Ron Kimmel. Unsupervised learning of dense

shape correspondence. In CVPR, 2019. 1, 2

[31] Benjamin Holzschuh, Zorah Lähner, and Daniel Cremers.

Simulated annealing for 3d shape correspondence. In 2020
International Conference on 3D Vision (3DV), 2020. 2

[32] Qixing Huang, Fan Wang, and Leonidas Guibas. Functional

map networks for analyzing and exploring large shape col-

lections. ACM Transactions on Graphics (ToG), 33(4):1–11,

2014. 2

[33] Qi-Xing Huang, Bart Adams, Martin Wicke, and Leonidas J

Guibas. Non-rigid registration under isometric deformations.

In Computer Graphics Forum. Wiley Online Library, 2008.

2

1379



[34] Ruqi Huang, Jing Ren, Peter Wonka, and Maks Ovsjanikov.

Consistent zoomout: Efficient spectral map synchronization.

In Computer Graphics Forum. Wiley Online Library, 2020.

2

[35] Vladimir G Kim, Yaron Lipman, and Thomas Funkhouser.

Blended intrinsic maps. ACM Transactions on Graphics
(ToG), 30(4):1–12, 2011. 6

[36] Artiom Kovnatsky, Michael M Bronstein, Alexander M

Bronstein, Klaus Glashoff, and Ron Kimmel. Coupled quasi-

harmonic bases. In Computer Graphics Forum. Wiley Online

Library, 2013. 2

[37] Zorah Lähner, Emanuele Rodola, Michael M Bronstein,

Daniel Cremers, Oliver Burghard, Luca Cosmo, An-

dreas Dieckmann, Reinhard Klein, and Yusuf Sahillioglu.

Shrec’16: Matching of deformable shapes with topological

noise. Proc. 3DOR, 2(10.2312), 2016. 7

[38] Lei Li, Nicolas Donati, and Maks Ovsjanikov. Learning

multi-resolution functional maps with spectral attention for

robust shape matching. NIPS, 2022. 1, 2, 6, 7

[39] Tianye Li, Timo Bolkart, Michael. J. Black, Hao Li, and

Javier Romero. Learning a model of facial shape and expres-

sion from 4D scans. ACM Transactions on Graphics (ToG),
36(6):194:1–194:17, 2017. 1

[40] Yang Li, Hikari Takehara, Takafumi Taketomi, Bo Zheng,

and Matthias Nießner. 4dcomplete: Non-rigid motion esti-

mation beyond the observable surface. In ICCV, 2021. 6

[41] Or Litany, Tal Remez, Emanuele Rodola, Alex Bronstein,

and Michael Bronstein. Deep functional maps: Structured

prediction for dense shape correspondence. In ICCV, 2017.

1, 2, 6

[42] Or Litany, Emanuele Rodolà, Alexander M Bronstein, and
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