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Abstract. 3D shape matching is a long-standing problem in computer
vision and computer graphics. While deep neural networks were shown to
lead to state-of-the-art results in shape matching, existing learning-based
approaches are limited in the context of multi-shape matching: (i) either
they focus on matching pairs of shapes only and thus suffer from cycle-
inconsistent multi-matchings, or (ii) they require an explicit template
shape to address the matching of a collection of shapes. In this paper,
we present a novel approach for deep multi-shape matching that ensures
cycle-consistent multi-matchings while not depending on an explicit tem-
plate shape. To this end, we utilise a shape-to-universe multi-matching
representation that we combine with powerful functional map regularisa-
tion, so that our multi-shape matching neural network can be trained in
a fully unsupervised manner. While the functional map regularisation is
only considered during training time, functional maps are not computed
for predicting correspondences, thereby allowing for fast inference. We
demonstrate that our method achieves state-of-the-art results on several
challenging benchmark datasets, and, most remarkably, that our unsu-
pervised method even outperforms recent supervised methods.

Keywords: 3D shape matching, multi-shape matching, functional maps,
3D deep learning

1 Introduction

The matching of 3D shapes is a long-standing problem in computer vision and
computer graphics. Due to its wide range of applications, numerous approaches
that address diverse variants of shape matching problems have been proposed
over the past decades [46,44]. In recent years, with the success of deep learn-
ing, many learning-based methods were introduced for shape matching. One
common way to address shape matching is to formulate it as classification prob-
lem [26,6,29,13,23,49]. The advantage of such methods is that after training the
classifier, shape correspondences can efficiently and directly be predicted. A ma-
jor downside is that for training such a classifier typically a large amount of
data that is annotated with ground truth correspondences is required. However,
specifically in the domain of 3D shapes, annotated data is scarce, since data
annotation is particularly time-consuming and tedious. Thus, in practice, the
above methods are often trained with small datasets, so that in turn they are
prone to overfitting and lack the ability to generalise across datasets.
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Unsup. ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓
Cycle-cons. ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓
No template✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓
Partiality ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓

Our multi-matching representation Partial multi-matching Comparison of methods

Fig. 1: Left: We present a novel unsupervised learning approach for cycle-
consistent multi-shape matching based on matching each shape to a (virtual)
universe shape. Middle: Our approach can successfully solve challenging par-
tial multi-shape matching problems. Right: Our method is the first learning-
based multi-shape matching approach that combines several favourable proper-
ties, i.e. it can be trained in an unsupervised manner, obtains cycle-consistent
multi-matchings, does not require a template, and allows for partial matchings.

Another line of learning-based shape matching solutions build upon the func-
tional map framework [24,16,39,9,41]. Functional maps can serve as a powerful
regularisation, so that respective methods were even trained successfully in an
unsupervised manner, i.e. without the availability of ground truth correspon-
dences [39,41,2]. However, a downside of such approaches is that the conversion
of the obtained functional map to a point-wise correspondence map is typically
non-trivial. On the one hand, this may limit the matching accuracy, while on the
other hand this may have a negative impact on inference speed (see Sec. 5.1).

In this work we aim to alleviate the shortcomings of both paradigms, while
combining their advantages. To this end, we present a novel unsupervised learn-
ing approach for obtaining cycle-consistent multi-shape matchings, see Fig. 1.
Our approach predicts shape-to-universe matchings based on a universe classi-
fier, so that cycle-consistency of so-obtained pairwise matchings is guaranteed
by construction. Unlike previous classification methods that rely on supervision
based on ground truth correspondences, the training of our universe classifier
purely relies on functional map regularisation, thereby allowing for a fully unsu-
pervised training. Yet, at inference time, our method does not require to com-
pute functional maps, and directly predicts shape-to-universe matchings via our
classifier. We summarise our main contributions as follows:

– For the first time we enable the unsupervised training of a classification-based
neural network for cycle-consistent 3D multi-shape matching.

– To this end, our method uses functional maps as strong regularisation during
training but does not require the computation of functional maps during
inference.

– Our method achieves state-of-the-art results on several challenging 3D shape
matching benchmark datasets, even in comparison to most recent supervised
methods.
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2 Related work

Shape matching is a well-studied problem in computer vision and graphics [46,44].
Rather than providing an exhaustive literature survey, in the following we will
focus on reviewing those methods that we consider most relevant to our work.
First, we will provide an overview of works that rely on the functional map frame-
work for 3D shape matching. Subsequently, we will focus on recent learning-based
approaches that utilise functional maps. Afterwards, we will briefly discuss other
learning-based methods. Eventually, we will discuss methods that are specifically
tailored for the case of multi-shape matching, as opposed to the more commonly
studied case of two-shape matching.

Functional maps. The functional map framework [31] enables to formu-
late the correspondence problem in the functional domain by computing func-
tional maps instead of point-wise maps. The key advantage of functional maps is
that they allow for a low-dimensional representation of shape correspondences,
i.e. small matrices that encode how functions can be transferred between two
domains (3D shapes). Unlike finding point-to-point correspondences, which can
for example be phrased as the NP-hard quadratic assignment problem [22], func-
tional maps can efficiently be obtained by solving a linear least-squares problem.
The functional map framework has been extensively studied and was extended
in numerous works, e.g. in terms of improving the accuracy or robustness [36],
as well as extending its application to partial shape matching [38], non-isometric
shape matching [30,37] and multi-shape matching [18,19]. Nevertheless, in these
approaches functional maps are typically utilised in an axiomatic manner, mean-
ing that they heavily rely on handcrafted feature descriptors, such as HKS [7],
WKS [3] or SHOT [40], which potentially limits their performance.

Learning methods based on functional maps. In contrast to axiomatic
approaches that use handcrafted features, a variety of methods have been pro-
posed to learn the feature descriptors directly from data. Starting from [24],
the (supervised) FMNet was proposed to learn a non-linear transformation of
SHOT descriptors [40]. Later work [16] modified the loss to enable FMNet train-
ing in an unsupervised manner. However, both methods compute a loss that
relies on geodesic distances, which is computationally expensive, particularly for
high-resolution shapes. SURFMNet [39] proposed an unsupervised loss based on
functional map regularisation, which, however, does not directly obtain point-
to-point correspondences. More recently, several works [9,41] replaced FMNet
with point-based networks [35,45] to achieve better performance. However, such
point-based networks cannot utilise the connectivity information that exists in
triangle meshes. To make use of it, DiffusionNet [42] introduced a diffusion layer,
which was shown to achieve state-of-the-art performance for 3D shape matching.
Most recently, DPFM [2] extended DiffusionNet with a cross-attention refine-
ment mechanism [47] for partial shape matching. DPFM addresses two variants
of partial matching problems: for partial-to-partial matching it relies on a super-
vised training strategy, and for partial-to-complete matching it can be trained in
an unsupervised manner based on functional map regularisation [38,25]. While
DPFM predicts functional maps and thereby requires a post-processing to ob-
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tain point-wise maps, our proposed approach directly predicts point-wise maps
without the need of computing functional maps during inference.

Other learning-based methods. Despite the success of functional maps
for diverse learning-based shape matching approaches, there is a wide variety of
other learning-based methods. Many of the recent works formulate shape match-
ing as a classification problem [26,6,29,13,23,49]. In these methods, special net-
work architectures were proposed to extend and generalise convolutions from
Euclidean grids to surfaces. However, these methods require ground truth corre-
spondences as supervision for training the classifier. 3D-CODED [15] factorised
a given input shape into a template shape and a learned global feature vector
that encodes the deformation from the template shape to the input shape. In
this way, it finds correspondences between input shapes and the template shape.
In contrast, our method does not require to choose a template shape for match-
ing. Deep shells [11] proposed a coarse-to-fine matching pipeline that utilises
an iterative alignment of smooth shells [10]. While this iterative process may
be time-consuming, our method directly predicts shape correspondences in one
shot.

Multi-shape matching. There are several works that explicitly consider
the matching of a collection of shapes, i.e. the so-called multi-shape matching
problem. The key aspect in which multi-shape matching differs from the more
commonly studied two-shape matching problem is that in the former one needs to
ensure cycle-consistency between pairwise matchings across a collection of data.
This is often achieved by first solving a quadratic number of pairwise match-
ing problems (e.g. between all pairs of shapes), and subsequently establishing
cycle consistency as a post-processing, e.g. based on permutation synchroni-
sation [32,17]. The higher-order projected power iteration (HiPPI) method [4]
circumvented this two-stage approach by generalising permutation synchronisa-
tion to explicitly consider geometric relations. In the context of functional maps,
Consistent ZoomOut [19] extended ZoomOut [27] by adding functional map con-
sistency constraints. IsoMuSh [14] simultaneously optimises for functional maps
and point-wise maps that are both multi-shape consistent. In contrast to these
axiomatic methods, which usually downsample the original shape for matching,
our method can be directly applied on shapes up to 10,000 vertices. Several
learning-based approaches, such as 3D-CODED [15], HSN [49] or ACSCNN [23],
utilised an explicit template shape in order to ensure cycle-consistent multi-
matchings. However, the use of an explicit template shape poses severe limita-
tions in practice, since a suitable template shape needs to be available, and the
specific choice of template also induces a bias. In stark contrast, our method
does not rely on an explicit template shape, thereby effectively alleviating such
a bias while at the same time providing substantially more flexibility.

3 Background

Our approach is based on the functional map framework and aims for a cycle-
consistent multi-shape matching. For completeness, we first recap the basic



Unsupervised Deep Multi-Shape Matching 5

pipeline for functional map computation and the desirable properties of func-
tional maps. Then, we introduce the notion of cycle consistency for multi-shape
matching.

3.1 Functional maps

Basic pipeline. Given is a pair of 3D shapes X and Y that are represented
as triangle meshes with nx and ny vertices, respectively. The basic pipeline for
computing a functional map between both shapes mainly consists of the following
steps:
– Compute the first k eigenfunctions Φx ∈ Rnx×k, Φy ∈ Rny×k of the respective

Laplacian matrix [34] as the basis functions.
– Compute feature descriptors Fx ∈ Rnx×c,Fy ∈ Rny×c on each shape, and

(approximately) represent them in the (reduced) basis of the respective
eigenfunctions, i.e. Ax = Φ†

xFx, Ay = Φ†
yFy.

– Compute the optimal functional map Cxy ∈ Rk×k by solving the optimisa-
tion problem

Cxy = argmin
C

Ldata (C) + λLreg (C) , (1)

where the data term Ldata ensures that C maps between the feature de-
scriptors represented in the reduced basis, and the regularisation term Lreg

penalises the map by its structural properties (as explained below).
– Convert the functional map Cxy to a point mapΠyx ∈ {0, 1}ny×nx , e.g. using

nearest neighbour search or other post-processing techniques [27,33,48] based
on the relationship

ΦyCxy ≈ ΠyxΦx. (2)

Structural properties. In the context of near-isometric shape pairs, functional
maps have the following properties [39,41]:
– Bijectivity. Given functional maps in both directions Cxy, Cyx, bijectivity

requires the map from X through Y to X to be the identity. The require-
ment can be formulated as the difference between their composition and the
identity map [12]. Thus, the bijectivity regularisation for functional maps
can be expressed in the form

Lbij = ∥CxyCyx − I∥2F + ∥CyxCxy − I∥2F . (3)

– Orthogonality. A point map is locally area-preserving if and only if the
associated functional map is an orthogonal matrix [31]. The orthogonality
regularisation for functional maps can be expressed in the form

Lorth =
∥∥C⊤

xyCxy − I
∥∥2
F
+
∥∥C⊤

yxCyx − I
∥∥2
F
. (4)

– Laplacian commutativity. A point map is an intrinsic isometry if and only
if the associated functional map commutes with the Laplace-Beltrami oper-
ator [31]. The Laplacian commutativity regularisation for functional maps
can expressed in the form

Llap = ∥CxyΛx − ΛyCxy∥2F + ∥CyxΛy − ΛxCyx∥2F , (5)
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where Λx and Λy are diagonal matrices of the Laplace-Beltrami eigenvalues
on the respective shapes.

3.2 Multi-shape matching

Given is a collection 3D shapes S. For any pair X ,Y ∈ S with nx, ny vertices,
respectively, the point map Πxy between them can be expressed in the form

Πxy ∈
{
Π ∈ {0, 1}nx×ny : Π1ny

≤ 1nx
,1⊤

nx
Π ≤ 1⊤

ny

}
, (6)

where Πxy(i, j) = 1 can be interpreted as the i-th vertex in shape X correspond-
ing to the j-th vertex in shape Y.

Cycle-consistency is a desirable property between pairwise matchings in a
collection, as it must hold for the true matchings. Cycle consistency means that
for any given triplet X ,Y,Z ∈ S, the matching composition from X through Y
to Z should be identical to the direct matching from X to Z, i.e.

Πxz = ΠxyΠyz. (7)

We note that if cycle consistency holds for all triplets in S, it also holds for any
higher-order tuples of matching compositions, since the latter can be constructed
by composing triplet matching compositions.

Alternatively, one can use a shape-to-universe matching representation [32,17]
to avoid explicitly modelling the (non-convex) cycle-consistency constraint in
Eq. (7). This idea builds upon a virtual universe shape, which can be thought of
a shape that is never explicitly instantiated, i.e. as opposed to a template shape
we do not require a 3D mesh of the universe shape. Instead, we merely assume
that there is such a shape, so that for all points of the shapes in S there ex-
ists a corresponding (virtual) universe point. We denote the number of universe
points as d. For Πx ∈ {0, 1}nx×d being the matching from shape X to the uni-
verse shape, and Π⊤

y ∈ {0, 1}d×ny being the matching from the universe shape
to shape Y, this shape-to-universe representation allows to compute pairwise
matchings as

Πxy = ΠxΠ
⊤
y . (8)

4 Our unsupervised multi-shape matching method

Our novel unsupervised learning approach for cycle-consistent multi-shape match-
ing is illustrated in Fig. 2. Conceptually, our pipeline comprises of two main
components that are trained in an end-to-end manner.

Analogous to other learning-based approaches [39,41], the first main compo-
nent (blue in Fig. 2) performs feature extraction. Given the source and target
shapes X and Y, a Siamese feature extraction network with (shared) train-
able weights Θ extracts features Fx and Fy from the input shapes, respectively.
Then, a (non-trainable but differentiable) FM solver (yellow in Fig. 2) is applied
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Feature
Extractor

FM Solver

Sinkhorn

Sinkhorn
Feature

Extractor

Universe
Classifier

Universe
Classifier

FM regularization

Train&Test
Train Only

FM regularization

Fig. 2: Overview of our unsupervised learning approach for cycle-consistent
multi-shape matching. First, features Fx and Fy are extracted from the input
shapes X and Y. The feature descriptors are then used to compute the bidi-
rectional functional maps Cxy and Cyx based on the FM solver. Subsequently,
our novel universe classifier takes the feature descriptors as input and predicts
a shape-to-universe matching (Πx and Πy) for each shape. The pairwise match-
ing Πxy is obtained by the composition of shape-to-universe point maps ΠxΠ

⊤
y .

During training (solid and dashed lines) we utilise functional maps (FM) as reg-
ularisation, whereas at inference time no FM have to be computed (solid lines).

to compute the bidirectional functional maps Cxy and Cyx. The second main
component (red in Fig. 2) is a Siamese universe classifier with shared weights
Φ. It takes features from the first part as input to predict the shape-to-universe
matchings Πx and Πy for each shape. The pairwise matching Πxy is based on
their composition, see Eq. (8). To allow for an unsupervised end-to-end training
of our architecture, we build upon functional map regularisation (green in Fig. 2)
described in Sec. 3.1. In the following we explain the individual parts in detail.

4.1 Feature extractor

The goal of the feature extraction module is to compute feature descriptors of
3D shapes that are suitable both for functional map computation and shape-
to-universe matching prediction. Our feature extraction is applied in a Siamese
manner, i.e. the identical network is used for both X and Y. The outputs of this
module are point-wise feature descriptors for each shape, which we denote as Fx

and Fy respectively.

4.2 Functional map solver

The FM solver aims to compute the bidirectional functional maps Cxy and Cyx

based on the extracted feature descriptors Fx and Fy (see Sec. 3.1). We use a
regularised formulation to improve the robustness when computing the optimal
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functional map [2], i.e. we consider

Cxy = argmin
C

∥CAx −Ay∥2F + λ
∑
ij

C2
ijMij , (9)

where

Mij =

(
Λy(i)

γ

Λy(i)2γ + 1
− Λx(j)

γ

Λx(j)2γ + 1

)2

+

(
1

Λy(i)2γ + 1
− 1

Λx(j)2γ + 1

)2

. (10)

The regulariser can be viewed as an extension of Laplacian commutativity de-
fined in Eq. (5) with well-justified theoretical foundation, see [36] for details.

4.3 Universe classifier

The goal of the universe classifier module is to utilise the extracted feature
descriptors Fx and Fy in order to predict the point-to-universe maps Πx and Πy,
respectively. Similarly to our feature extractor, the universe classifier is applied
in a Siamese way. The output dimension of our universe classifier is equal to the
number of points d in the universe shape (see supp. mat. for details how it is
chosen).

For our shape-to-universe matching representation, each point of a shape
needs to be classified into exactly one universe class, and a universe class cannot
be chosen multiple times (per shape). Mathematically, this means that the point-
to-universe map Πx must be a partial permutation matrix as defined in Eq. (6),
where in addition the rows of Πx sum up to one, i.e.

Πx ∈
{
Π ∈ {0, 1}nx×d : Π1d = 1nx ,1

⊤
nx
Π ≤ 1⊤

d

}
. (11)

We approximate these combinatorial constraints in terms of Sinkhorn normali-
sation [43,28] to make the prediction differentiable. Sinkhorn normalisation iter-
atively normalises rows and columns of a matrix based on the softmax operator
and a temperature parameter τ (see [28]).

4.4 Unsupervised loss

Our unsupervised loss is composed of two main parts:
FM regularisation for feature extractor. Following [39,41], we use func-

tional map regularisation to compute unsupervised losses for optimised bidirec-
tional functional maps Cxy and Cyx. Specifically, we use the bijectivity loss Lbij

in Eq. (3), the orthogonality loss Lorth in Eq. (4), and the Laplacian commuta-
tivity loss Llap in Eq. (5) to regularise the functional maps. As such, the total
loss for training the feature extractor can be expressed in the form

Lft = wbijLbij + worthLorth + wlapLlap. (12)

In case of partial shape matching, the functional map from the complete shape to
the partial shape becomes a slanted diagonal matrix [38]. We follow DPFM [2] to
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regularise the predicted functional maps based on this observation. For X being
the complete shape and Y being the partial shape, in the partial matching case
the loss terms can be expressed as

Lbij = ∥CxyCyx − Ir∥2F , and Lorth = ∥CxyC
⊤
xy − Ir∥2F , (13)

where Ir is a diagonal matrix in which the first r elements on the diagonal are
equal to 1, and r is the slope of the functional map estimated by the area ratio
between two shapes, i.e. r = max

{
i | Λi

y < max (Λx)
}
.

FM regularisation for universe classifier. To train our universe classifier
in an unsupervised manner, we build upon the relationship ΦxCyx ≈ ΠxyΦy

between the functional map Cyx and the point-wise map Πxy, as explained in
Eq. (2). In our case, the pairwise point mapΠxy is obtained from the composition
of the shape-to-universe point maps Πxy = ΠxΠ

⊤
y . With that, the unsupervised

loss for training the universe classifier can be expressed in the form

Lcls = ∥ΦxCyx −ΠxyΦy∥2F . (14)

This loss is differentiable with respect to both the functional map Cyx and the
point map Πxy, so that we can train our network in an end-to-end manner.
By doing so, the predicted functional map and the predicted point map are
improved during training. Overall, we demonstrate that we are able to achieve
better matching results even in comparison a network trained with ground truth
correspondences (see Sec. 5.3).

The total loss combines the loss terms of the feature extractor and the uni-
verse classifier and has the form

Ltotal = Lft + λclsLcls. (15)

4.5 Implementation details

We implemented our method in PyTorch. Our feature extractor takes SHOT
descriptors [40] as inputs. We use DiffusionNet [42] as the network architecture
for both our feature extractor and universe classifier. In terms of training, we
use the Adam optimiser [21] with learning rate 1e−3 in all experiments. More
details are provided in the supp. mat.

5 Experimental results

For our experimental evaluation, we consider complete shape matching, partial
shape matching, as well as an ablation study that analyses the importance of
individual components of our method. We note that in all experiments we train
a single network for all shapes in a dataset (as opposed to a per-shape category
network).
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Geodesic error (×100) FAUST SCAPE F on S S on F △

Axiomatic Methods
BCICP [37] 6.4 11 - - ✗
ZOOMOUT [27] 6.1 7.5 - - ✗
Smooth Shells [10] 2.5 4.7 - - ✗

Supervised Methods
FMNet [24] 11 17 30 33 ✗
+ pmf 5.9 6.3 11 14 ✗
3D-CODED [15] 2.5 31 31 33 ✓
GeomFmaps-KPC [9] 3.1 4.4 11 6.0 ✗
+ zo 1.9 3.0 9.2 4.3 ✗
GeomFmaps-DFN [42] 2.6 3.0 3.3 3.0 ✗
+ zo 1.9 2.4 2.4 1.9 ✗
HSN [49] 3.3 3.5 25.4 16.7 ✓
ACSCNN [23] 2.7 3.2 8.4 6.0 ✓

Unsupervised Methods
SURFMNet [39] 15 12 32 32 ✗
+ icp 7.4 6.1 19 23 ✗
Unsup FMNet [16] 10 16 29 22 ✗
+ pmf 5.7 10 12 9.3 ✗
WSupFMNet [41] 3.3 7.3 11.7 6.2 ✗
+ zo 1.9 4.9 8.0 4.3 ✗
Deep Shells [11] 1.7 2.5 5.4 2.7 ✗
Ours (fine-tune) 1.5 2.0 7.3 (3.2) 8.6 (3.2) ✓

FAUST (Ours)

SCAPE (Ours) SCAPE (Deep Shells)

FAUST (Deep Shells)

Fig. 3: Left: Quantitative results on the FAUST and SCAPE datasets in terms of
mean geodesic errors (×100). ‘F on S’ stands for training on FAUST and testing
on SCAPE datasets (‘S on F’ analogously). The rows in grey show refined results
using the indicated post-processing procedure. Ours is the only unsupervised
method that obtains cycle-consistent (△) multi-matchings. Right: Qualitative
multi-matching results using our method and Deep Shells. Although qualitatively
both methods perform similarly, ours directly predicts shape correspondences
without iterative refinement, thereby leading to a faster inference, cf. Fig. 5.

5.1 Complete shape matching

Datasets. To be consistent and comparable with prior works, we evaluate our
method on two standard benchmarks, FAUST [5] and SCAPE [1] (for both,
we use the more challenging remeshed versions from [37]). The FAUST dataset
contains 100 shapes consisting of 10 people, each in 10 poses. The SCAPE dataset
comprises 71 different poses of the same person. Consistent with previous works,
we split both datasets into training sets with 80 and 51 shapes, respectively, and
test sets with 20 shapes.

Quantitative results. For the evaluation we use the mean geodesic error
defined in the Princeton benchmark protocol [20]. We compare our method with
state-of-the-art axiomatic, supervised and unsupervised methods, as shown in
Fig. 3. Our method outperforms the previous state-of-the-art in most settings,
even in comparison to the supervised methods. The last two columns in the table
shown in Fig. 3 (left) show generalisation results. Our method generalises better
compared to previous unsupervised methods based on functional map regularisa-
tion [16,39,41]. In comparison to Deep Shells [11], our method shows comparative
results after fine-tuning our pipeline with the loss in Eq. (15) for each shape pair
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SURFMNet+icp: 0.0793
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SCAPE

FMNet: 0.1581
FMNet+pmf: 0.0704
Unsup FMNet: 0.1639
Unsup FMNet+pmf: 0.0992
SURFMNet: 0.1246
SURFMNet+icp: 0.0607
GeomFmaps: 0.0439
GeomFmaps+zo: 0.0303
3D-CODED: 0.3095
Deep Shells: 0.0254
Ours: 0.0200

Fig. 4: PCK curves for the FAUST and SCAPE dataset. Dashed lines indicate
methods with refinement. Our method achieves the best scores on both datasets.

individually (see details on fine-tuning in supp. mat.). We plot the percentage
of correct keypoints (PCK) curves for both datasets in Fig. 4, where it can be
seen that our method achieves the best results in comparison to a wide range
of methods. Moreover, our method does not require post-processing techniques,
such as ZOOMOUT [27] or PMF [48], which are often time-consuming, see Fig. 5
for runtime comparisons.

Runtime (s) Inference Refine Total

Axiomatic Methods
BCICP [37] 881. - 881.
ZoomOut [27] 43. - 43.
Smooth Shells [10] 125. - 125.

Supervised Methods
FMNet [24] 5.1 223. 228.
3D-CODED [15] 725. - 725.
GeomFmaps-KPC [9] 1.9 35. 37.
GeomFmaps-DFN [42] 1.5 35. 37.

Unsupervised Methods
SURFMNet [39] 5.7 43. 49.
Unsup FMNet [16] 5.1 216. 221.
WSupFMNet [41] 2.1 35. 37.
Deep Shells [11] 14. - 14.
Ours (fine-tune) 0.6 (5.0) - 0.6 (5.0)

Ours (cycle-consistent     )

GeomFmaps-DFN (cycle-consistent    )

(best viewed magnified on screen)

Fig. 5: Left: Runtimes for the matchings in the experiments of Fig. 3. Right:
Texture transfer using our method and the supervised GeomFmaps-DFN (erro-
neous matchings indicated by red arrows). Cycle consistency ensures that our
method consistently transfers textures.
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Geo. error (×100) CUTS HOLES △

Axiomatic Methods
FSP [25] 13.0 16.0 ✗
PFM [38] 9.2 12.6 ✗

Unsupervised Methods
WSupFMNet [41] 15.0 13.0 ✗
DPFM [2] 6.6 10.4 ✗
Ours 5.5 8.9 ✓

Ours (cycle-consistent    ) DPFM (cycle-consistent    )

(best viewed magnified on screen)

Colour
code

Fig. 6: Left: Quantitative results on the CUTS and HOLES subsets of the
SHREC’16 Partial Correspondence Benchmark. Reported are mean geodesic er-
rors (×100). Ours is the only method that obtains cycle-consistent (△) multi-
matchings. Right: Qualitative multi-matching results using our method and
DPFM on the HOLES subset (erroneous matchings indicated by red arrows).

5.2 Partial shape matching

Datasets. We evaluate our method in the setting of partial shape matching on
the challenging SHREC’16 Partial Correspondence Benchmark [8]. This dataset
consists of 200 shapes with 8 categories (humans and animals). The dataset is
divided into two subsets, namely CUTS (removal of a large part) with 120 pairs
and HOLES (removal of many small parts) with 80 pairs. We follow the training
procedure as in WSupFMNet [41].

Quantitative results. We compare our method with two axiomatic meth-
ods FPS [25], PFM [38] and two unsupervised methods WSupFMNet [41], un-
supervised DPFM [2]. In Fig. 6 we show quantitative results (in terms of the
mean geodesic error) and qualitative results. Our method outperforms previous
axiomatic and unsupervised methods. The major difference in comparison to the
unsupervised DPFM that predicts partial-to-complete functional maps, is that
our method directly predicts shape-to-universe correspondences based on our
universe classifier, so that ours leads to cycle-consistent multi-matchings.

5.3 Ablation study

The goal of this section is to evaluate the importance of the individual com-
ponents of our approach, including the universe classifier and our unsupervised
loss. For all ablation experiments, we consider the same experimental protocol
as in Sec. 5.1. We summarise the results for all ablative experiments and our
full method in Fig. 7. We study a total of three different ablative settings that
consider the removal of the universe classifier, or the modification of the loss. In
the following we explain these in detail.

Classifier-free. We remove the universe classifier in our pipeline and only
train the feature extractor with the unsupervised loss Lft defined in Eq. (12).
At test time, we convert the optimised functional maps to point maps using
nearest neighbour search. In comparison to our complete method, the matching
performance drops substantially, especially in the last two columns of Fig. 7,
indicating that this results in poor generalisation ability across datasets. Overall,



Unsupervised Deep Multi-Shape Matching 13

this implies that our universe classifier is able to predict more accurate point
maps compared to point maps converted from functional maps.

Feature similarity. In the previous ablative experiment, we modify our
network architecture by removing the classifier and change our unsupervised
loss at the same time. Here, we focus on the universe classifier only, i.e. we re-
move it from our pipeline, while keeping our unsupervised loss. To this end,
we construct a soft pairwise point map based on the feature similarity be-
tween two shapes with the help of Sinkhorn normalisation, similar to Deep
Shells [11]. By doing so, the pairwise point map can be expressed in the form

Πxy(i, j) ∝ exp
(
− 1

λ ∥Fx(i)−Fy(j)∥22
)
. In comparison to classifier-free experi-

ment, we observe that point maps based on such a feature similarity have similar
performance on the intra-dataset experiments, while it significantly improves the
generalisation ability across datasets. However, there is still a performance gap
compared with our complete method.

Supervised training. The goal of this ablative experiment is to show the
superiority of our unsupervised loss based on functional map regularisation com-
pared to a supervised classification loss. In this experiment, we use the same
network architecture as for our complete method. However, we replace our un-
supervised loss defined in Eq. (15) by a cross entropy loss between the predicted
correspondences and the ground truth correspondences. In comparison to our
complete method, we observe that the supervised alternative achieves better
performance on FAUST dataset, but leads to a worse performance on other
datasets, especially for the generalisation cases. We believe that the main reason
is that the supervised approach is overfitting to the training data, but lacks the
ability to generalise across datasets.

Geo. error (×100) FAUST SCAPE F on S S on F

Classifier-free 2.1 3.8 17.4 22.9
Feat. similarity 2.1 3.7 10.6 13.9
Supervised 1.4 2.8 9.8 18.5
Ours 1.5 2.0 7.3 8.6

Ours Cls-free Feat. Sim. Sup.

(best viewed magnified on screen)

Colour
code

Fig. 7: Left: Quantitative results of our ablation study on the FAUST and
SCAPE datasets. Right: Qualitative results for the considered ablative experi-
ments on the SCAPE dataset (erroneous matchings indicated by red arrows).

6 Limitations and future work

Our work is the first unsupervised learning-based approach for finding cycle-
consistent matchings between multiple 3D shapes, and additionally pushes the
current state of the art in multi-shape matching. Yet, there are also some limi-
tations that give rise to interesting future research questions.
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For our approach it is not necessary that the universe shape is explicitly
instantiated (e.g. in the form of 3D mesh). However, we require to fix the max-
imum number of points d of this (virtual) universe shape for training, since d
corresponds to the number of output classes that are predicted by our classifier.
With that, a universe classifier trained with a fixed number of d classes is not
able to predict (unique) correspondences of shapes with more than d vertices.
The exploration of alternative formalisms that do not require to fix d as a-priori
is an interesting future direction.

Our universe classifier can be trained in an unsupervised manner both with
datasets comprising of complete shapes only, as well as with mixed datasets
(comprising of partial shapes and at least a single complete shape of the same
category). As such, our current neural network does not allow for the unsuper-
vised training with datasets that contain only partially observed shapes. This
is due to limitations for partial-to-partial matchings that our approach inherits
from the functional map framework. We note that DPFM [2] also shares this
limitation – in their case, the authors utilise a supervised training strategy when
considering the partial-to-partial matching case. Since DPFM uses different net-
work architectures for partial-to-complete and partial-to-partial settings, it can-
not be applied to different settings during training and inference. For example,
it cannot be trained using partial-to-complete shape pairs and then be applied
to predict partial-to-partial correspondences. In contrast, our method is more
flexible, as we use a single neural network architecture based on our universe
classifier, where the shape-to-universe matching formalism naturally allows to
represent complete, partial-to-complete as well as partial-to-partial matchings.

7 Conclusion

We introduce the first approach for the unsupervised training of a deep neu-
ral network for predicting cycle-consistent matchings across a collection of 3D
shapes. Our approach builds upon the powerful functional map framework in or-
der to allow for an unsupervised training. Yet, during inference we directly pre-
dict point-wise matchings and do not require to compute functional maps, which
has a positive impact on the runtime. The major strength of our approach is that
it combines a unique set of favourable properties: our approach can be trained
in an unsupervised manner, obtains cycle-consistent multi-matchings, does not
rely on a template shape, and can handle partial matchings. Overall, due to
the conceptual novelties and the demonstrated state-of-the-art performance on
diverse shape matching benchmarks, we believe that our work advances the field
of 3D shape matching.
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8 Supplementary Material

In this supplementary document we first introduce the implementation details of
our method. Subsequently, we provide details on the unsupervised loss for partial
shape matching. Afterwards, we discuss our network fine-tuning. Eventually, we
also show additional qualitative results of our method.

8.1 Implementation details

We implemented our method in PyTorch. Our feature extractor takes 352-
dimensional pre-computed SHOT descriptors [40] as inputs. We use Diffusion-
Net [42] composed of 4 diffusion blocks with width 128 as the network architec-
ture for both our feature extractor and universe classifier. In the context of the
FM solver, we set λ = 100 in Eq. (9) and γ = 0.5 in Eq. (10) for our partial shape
matching (for complete shape matching we use λ = 0). For the basis functions
for functional maps computation, we choose the number to be 80 for the FAUST
and SCAPE datasets for full shape matching. For partial shape matching, we
choose the number to be 50 and 30 for the CUTS and HOLES subsets of the
SHREC’16, respectively, to be consistent with DPFM [2]. We apply Sinkhorn
normalisation with the number of iterations equal to 10 and the temperature
parameter τ equal to 0.2.

If a dataset provides ground truth correspondences based on a reference
shape, we set the number of universe vertices to the number of vertices of the
reference shape. Otherwise, we set the number of universe vertices to the largest
number of vertices among the given shapes. For network training, we use wbij =
1.0, worth = 1.0, wlap = 10−3 for Lft in Eq. (12) (for partial shape matching
we use wlap = 0, since in this case we already enforce Laplacian commutativity
regularisation in our regularised FM solver). The final loss is a linear combination
of Lft and Lcls, where we set λcls = 0.01 for complete shape matching. The loss
for the universe classifier Lcls is slightly different from Eq. (14) for partial shape
matching, for which we provide the details in Sec. 8.2. We train our network with
a batch size of 1 for all datasets. We use the ADAM optimiser with a learning
rate of 10−3 for all experiments. The total number of training iterations for each
dataset is 20000. During the first 4000 training iterations, when computing Lcls

defined in Eq. (14), we detach the gradient for Cyx and only regularise it based
on its structural properties defined in Lft. Afterwards, we will use the gradients
for both Cyx and Πxy to optimise our network. In this way, it can lead to faster
convergence and better network performance.

8.2 Unsupervised loss for partial shape matching

In the context of partial-to-complete shape matching, we can assume that the
complete shape plays the role of the universe shape, since it is guaranteed that
each point in the partial shapes is in correspondence with exactly one point in
the complete shape. We modify the unsupervised loss for universe classifier based
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on it. For X being the complete shape and Y being the partial shape, the loss
term can be expressed in the form

Lcls = Lsmooth
ce (Πx, Id) + Lsmooth

ce (Πy, Π̂y), (16)

where Id is the identity matrix of size d, Π̂y is the partial-to-complete corre-
spondences obtained by nearest neighbour search between ΦyCxy and Φx, and
Lsmooth
ce is the cross entropy loss with label smoothing, where we set the smooth-

ing factor equal to 0.1. The first term of the equation encourages the corre-
spondences between the complete shape and the (virtual) universe shape to be
identical, while the second term regularises the predicted partial-to-universe cor-
respondence based on functional map regularisation. Similar to complete shape
matching, the total unsupervised loss is a linear combination of Lft and Lcls,
where we set λcls = 1.0.

8.3 Network fine-tuning

We observe that the generalisation ability of our method across different datasets
can be improved by network fine-tuning, as shown in Fig. 3 (main paper). In
order to achieve this, we first train our network on the training dataset in the
ordinary way, and afterwards we use an unsupervised fine-tuning of the pre-
trained network for the test dataset. Specifically, during fine-tuning, we update
the network weights for each shape pair independently. To this end, we use the
same loss defined in Eq. (15) to optimise the network with a fixed number of
five forward/backward passes (for each shape pair individually). The advantage
of network fine-tuning compared to post-processing techniques is that it directly
optimises the network itself, thus leading to better performance.

8.4 Additional qualitative results

We show additional qualitative results on the FAUST dataset in Fig 8, on the
SCAPE dataset in Fig 9, as well as on the SHREC’16 datset in Fig 10. Our
method predicts shape-to-universe correspondences for each shape to obtain
cycle-consistent multi-shape matchings among a collection of shapes.



20 D. Cao and F. Bernard

Colour code

Fig. 8: Qualitative multi-matching results using our method on the FAUST
dataset.

Colour Code

Fig. 9: Qualitative multi-matching results using our method on the SCAPE
dataset.
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Colour code

Fig. 10: Qualitative partial-to-partial multi-matching results using our method
on the SHREC’16 dataset. The full shape is shown merely for visualisation pur-
poses (colour code).
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8.5 Inter-class shape matching

We evaluate our method for the challenging inter-class multi-shape matching on
the TOSCA dataset.

Colour code

Fig. 11: Qualitative inter-class multi-matching results using our method on the
TOSCA dataset.

8.6 Shape matching on SHREC’19 dataset

We evaluate our method on the more challenging SHREC’19 dataset. Further-
more, we randomly remesh each shape to different resolution to evaluate the
robustness of our method with respect to different meshings.

3326  5089 4088 4438 3283 2693

Fig. 12: Qualitative shape matching results using our method on the SHREC’19
dataset with different resolution (numbers refer to #vertices).
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